Cargando…
Inferring Gene Regulatory Networks From Single-Cell Transcriptomic Data Using Bidirectional RNN
Accurate inference of gene regulatory rules is critical to understanding cellular processes. Existing computational methods usually decompose the inference of gene regulatory networks (GRNs) into multiple subproblems, rather than detecting potential causal relationships simultaneously, which limits...
Autores principales: | Gan, Yanglan, Hu, Xin, Zou, Guobing, Yan, Cairong, Xu, Guangwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178250/ https://www.ncbi.nlm.nih.gov/pubmed/35692809 http://dx.doi.org/10.3389/fonc.2022.899825 |
Ejemplares similares
-
Identification of Differential Gene Groups From Single-Cell Transcriptomes Using Network Entropy
por: Gan, Yanglan, et al.
Publicado: (2020) -
Predicting synergistic anticancer drug combination based on low-rank global attention mechanism and bilinear predictor
por: Gan, Yanglan, et al.
Publicado: (2023) -
Dynamic epigenetic mode analysis using spatial temporal clustering
por: Gan, YangLan, et al.
Publicado: (2016) -
Identification of cancer subtypes from single-cell RNA-seq data using a consensus clustering method
por: Gan, Yanglan, et al.
Publicado: (2018) -
An intelligent Chatbot using deep learning with Bidirectional RNN and attention model
por: Dhyani, Manyu, et al.
Publicado: (2021)