Cargando…
Functional and Technical Aspects of Self-management mHealth Apps: Systematic App Search and Literature Review
BACKGROUND: Although the past decade has witnessed the development of many self-management mobile health (mHealth) apps that enable users to monitor their health and activities independently, there is a general lack of empirical evidence on the functional and technical aspects of self-management mHe...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178446/ https://www.ncbi.nlm.nih.gov/pubmed/35612887 http://dx.doi.org/10.2196/29767 |
_version_ | 1784723062818603008 |
---|---|
author | Alwakeel, Lyan Lano, Kevin |
author_facet | Alwakeel, Lyan Lano, Kevin |
author_sort | Alwakeel, Lyan |
collection | PubMed |
description | BACKGROUND: Although the past decade has witnessed the development of many self-management mobile health (mHealth) apps that enable users to monitor their health and activities independently, there is a general lack of empirical evidence on the functional and technical aspects of self-management mHealth apps from a software engineering perspective. OBJECTIVE: This study aims to systematically identify the characteristics and challenges of self-management mHealth apps, focusing on functionalities, design, development, and evaluation methods, as well as to specify the differences and similarities between published research papers and commercial and open-source apps. METHODS: This research was divided into 3 main phases to achieve the expected goal. The first phase involved reviewing peer-reviewed academic research papers from 7 digital libraries, and the second phase involved reviewing and evaluating apps available on Android and iOS app stores using the Mobile Application Rating Scale. Finally, the third phase involved analyzing and evaluating open-source apps from GitHub. RESULTS: In total, 52 research papers, 42 app store apps, and 24 open-source apps were analyzed, synthesized, and reported. We found that the development of self-management mHealth apps requires significant time, effort, and cost because of their complexity and specific requirements, such as the use of machine learning algorithms, external services, and built-in technologies. In general, self-management mHealth apps are similar in their focus, user interface components, navigation and structure, services and technologies, authentication features, and architecture and patterns. However, they differ in terms of the use of machine learning, processing techniques, key functionalities, inference of machine learning knowledge, logging mechanisms, evaluation techniques, and challenges. CONCLUSIONS: Self-management mHealth apps may offer an essential means of managing users’ health, expecting to assist users in continuously monitoring their health and encourage them to adopt healthy habits. However, developing an efficient and intelligent self-management mHealth app with the ability to reduce resource consumption and processing time, as well as increase performance, is still under research and development. In addition, there is a need to find an automated process for evaluating and selecting suitable machine learning algorithms for the self-management of mHealth apps. We believe that these issues can be avoided or significantly reduced by using a model-driven engineering approach with a decision support system to accelerate and ameliorate the development process and quality of self-management mHealth apps. |
format | Online Article Text |
id | pubmed-9178446 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-91784462022-06-10 Functional and Technical Aspects of Self-management mHealth Apps: Systematic App Search and Literature Review Alwakeel, Lyan Lano, Kevin JMIR Hum Factors Review BACKGROUND: Although the past decade has witnessed the development of many self-management mobile health (mHealth) apps that enable users to monitor their health and activities independently, there is a general lack of empirical evidence on the functional and technical aspects of self-management mHealth apps from a software engineering perspective. OBJECTIVE: This study aims to systematically identify the characteristics and challenges of self-management mHealth apps, focusing on functionalities, design, development, and evaluation methods, as well as to specify the differences and similarities between published research papers and commercial and open-source apps. METHODS: This research was divided into 3 main phases to achieve the expected goal. The first phase involved reviewing peer-reviewed academic research papers from 7 digital libraries, and the second phase involved reviewing and evaluating apps available on Android and iOS app stores using the Mobile Application Rating Scale. Finally, the third phase involved analyzing and evaluating open-source apps from GitHub. RESULTS: In total, 52 research papers, 42 app store apps, and 24 open-source apps were analyzed, synthesized, and reported. We found that the development of self-management mHealth apps requires significant time, effort, and cost because of their complexity and specific requirements, such as the use of machine learning algorithms, external services, and built-in technologies. In general, self-management mHealth apps are similar in their focus, user interface components, navigation and structure, services and technologies, authentication features, and architecture and patterns. However, they differ in terms of the use of machine learning, processing techniques, key functionalities, inference of machine learning knowledge, logging mechanisms, evaluation techniques, and challenges. CONCLUSIONS: Self-management mHealth apps may offer an essential means of managing users’ health, expecting to assist users in continuously monitoring their health and encourage them to adopt healthy habits. However, developing an efficient and intelligent self-management mHealth app with the ability to reduce resource consumption and processing time, as well as increase performance, is still under research and development. In addition, there is a need to find an automated process for evaluating and selecting suitable machine learning algorithms for the self-management of mHealth apps. We believe that these issues can be avoided or significantly reduced by using a model-driven engineering approach with a decision support system to accelerate and ameliorate the development process and quality of self-management mHealth apps. JMIR Publications 2022-05-25 /pmc/articles/PMC9178446/ /pubmed/35612887 http://dx.doi.org/10.2196/29767 Text en ©Lyan Alwakeel, Kevin Lano. Originally published in JMIR Human Factors (https://humanfactors.jmir.org), 25.05.2022. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Human Factors, is properly cited. The complete bibliographic information, a link to the original publication on https://humanfactors.jmir.org, as well as this copyright and license information must be included. |
spellingShingle | Review Alwakeel, Lyan Lano, Kevin Functional and Technical Aspects of Self-management mHealth Apps: Systematic App Search and Literature Review |
title | Functional and Technical Aspects of Self-management mHealth Apps: Systematic App Search and Literature Review |
title_full | Functional and Technical Aspects of Self-management mHealth Apps: Systematic App Search and Literature Review |
title_fullStr | Functional and Technical Aspects of Self-management mHealth Apps: Systematic App Search and Literature Review |
title_full_unstemmed | Functional and Technical Aspects of Self-management mHealth Apps: Systematic App Search and Literature Review |
title_short | Functional and Technical Aspects of Self-management mHealth Apps: Systematic App Search and Literature Review |
title_sort | functional and technical aspects of self-management mhealth apps: systematic app search and literature review |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178446/ https://www.ncbi.nlm.nih.gov/pubmed/35612887 http://dx.doi.org/10.2196/29767 |
work_keys_str_mv | AT alwakeellyan functionalandtechnicalaspectsofselfmanagementmhealthappssystematicappsearchandliteraturereview AT lanokevin functionalandtechnicalaspectsofselfmanagementmhealthappssystematicappsearchandliteraturereview |