Cargando…
Accurate Prediction of y Ions in Beam-Type Collision-Induced Dissociation Using Deep Learning
[Image: see text] Peptide fragmentation spectra contain critical information for the identification of peptides by mass spectrometry. In this study, we developed an algorithm that more accurately predicts the high-intensity peaks among the peptide spectra. The training data are composed of 180,833 p...
Autores principales: | Shin, HyeonSeok, Park, Youngmin, Ahn, Kyunggeun, Kim, Sungsoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178553/ https://www.ncbi.nlm.nih.gov/pubmed/35609248 http://dx.doi.org/10.1021/acs.analchem.1c03184 |
Ejemplares similares
-
Rational Protein Engineering Guided by Deep Mutational Scanning
por: Shin, HyeonSeok, et al.
Publicado: (2015) -
Increasing the Productivity of Glycopeptides Analysis by Using Higher-Energy Collision Dissociation-Accurate Mass-Product-Dependent Electron Transfer Dissociation
por: Saba, Julian, et al.
Publicado: (2012) -
Deep-Learning-Assisted Focused Ion Beam Nanofabrication
por: Buchnev, Oleksandr, et al.
Publicado: (2022) -
Machine and deep learning techniques in heavy-ion collisions with ALICE
por: Haake, Rüdiger
Publicado: (2017) -
Negative Ion Mode Collision-Induced Dissociation for Analysis of Protein Arginine Methylation
por: Katsanovskaja, Ksenia, et al.
Publicado: (2019)