Cargando…

Navigate Flying Molecular Elephants Safely to the Ground: Mass-Selective Soft Landing up to the Mega-Dalton Range by Electrospray Controlled Ion-Beam Deposition

[Image: see text] The prototype of a highly versatile and efficient preparative mass spectrometry system used for the deposition of molecules in ultrahigh vacuum (UHV) is presented, along with encouraging performance data obtained using four model species that are thermolabile or not sublimable. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Walz, Andreas, Stoiber, Karolina, Huettig, Annette, Schlichting, Hartmut, Barth, Johannes V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178560/
https://www.ncbi.nlm.nih.gov/pubmed/35609119
http://dx.doi.org/10.1021/acs.analchem.1c04495
Descripción
Sumario:[Image: see text] The prototype of a highly versatile and efficient preparative mass spectrometry system used for the deposition of molecules in ultrahigh vacuum (UHV) is presented, along with encouraging performance data obtained using four model species that are thermolabile or not sublimable. The test panel comprises two small organic compounds, a small and very large protein, and a large DNA species covering a 4-log mass range up to 1.7 MDa as part of a broad spectrum of analyte species evaluated to date. Three designs of innovative ion guides, a novel digital mass-selective quadrupole (dQMF), and a standard electrospray ionization (ESI) source are combined to an integrated device, abbreviated electrospray controlled ion-beam deposition (ES-CIBD). Full control is achieved by (i) the square-wave-driven radiofrequency (RF) ion guides with steadily tunable frequencies, including a dQMF allowing for investigation, purification, and deposition of a virtually unlimited m/z range, (ii) the adjustable landing energy of ions down to ∼2 eV/z enabling integrity-preserving soft landing, (iii) the deposition in UHV with high ion beam intensity (up to 3 nA) limiting contaminations and deposition time, and (iv) direct coverage control via the deposited charge. The maximum resolution of R = 650 and overall efficiency up to T(total) = 4.4% calculated from the solution to UHV deposition are advantageous, whereby the latter can be further enhanced by optimizing ionization performance. In the setup presented, a scanning tunneling microscope (STM) is attached for in situ UHV investigations of deposited species, demonstrating a selective, structure-preserving process and atomically clean layers.