Cargando…

Predicting Reaction Mechanisms for the Threonine-Residue Stereoinversion Catalyzed by a Dihydrogen Phosphate Ion

[Image: see text] The stereoinversion of amino acid residues in proteins is considered to trigger various age-related diseases. Serine (Ser) residues are relatively prone to stereoinversion. It is assumed that threonine (Thr) residues also undergo stereoinversion, which results in the formation of t...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakayoshi, Tomoki, Kato, Koichi, Kurimoto, Eiji, Takano, Yu, Oda, Akifumi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178615/
https://www.ncbi.nlm.nih.gov/pubmed/35694452
http://dx.doi.org/10.1021/acsomega.2c00372
Descripción
Sumario:[Image: see text] The stereoinversion of amino acid residues in proteins is considered to trigger various age-related diseases. Serine (Ser) residues are relatively prone to stereoinversion. It is assumed that threonine (Thr) residues also undergo stereoinversion, which results in the formation of the d-allo-Thr residue, by the same mechanisms as those for Ser-residue stereoinversion; however, d-allo-Thr residues have not been detected in vivo. To date, although Ser-residue stereoinversion has been suggested to progress via enolization, plausible reaction mechanisms for Thr-residue stereoinversion have not been proposed. In this study, we investigated the pathway of Thr-residue enolization and successfully identified the three types of plausible reaction pathways of Thr-residue stereoinversion catalyzed by a dihydrogen phosphate ion. The geometries of reactant complexes, transition states, and enolized product complexes were optimized using B3LYP density functional methods, and single-point calculations were performed for all optimized geometries using Møller–Plesset perturbation theory to obtain reliable energies. As a result, the calculated activation energies of Thr-residue stereoinversion were 105–106 kJ mol(–1), which were comparable with those of Ser-residue stereoinversion reported previously. The infrequency of Thr-residue stereoinversion may be due to other factors, such as the hydrophobicity and/or the steric hindrance of the γ-methyl group, rather than the high activation energies.