Cargando…
Fault Detection and Isolation of Non-Gaussian and Nonlinear Processes Based on Statistics Pattern Analysis and the k-Nearest Neighbor Method
[Image: see text] Only low-order information of process data (i.e., mean, variance, and covariance) was considered in the principal component analysis (PCA)-based process monitoring method. Consequently, it cannot deal with continuous processes with strong dynamics, nonlinearity, and non-Gaussianity...
Autores principales: | Zhou, Zhe, Wang, Jian, Yang, Chunjie, Wen, Chenglin, Li, Zuxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178650/ https://www.ncbi.nlm.nih.gov/pubmed/35694521 http://dx.doi.org/10.1021/acsomega.2c01279 |
Ejemplares similares
-
Fault Detection of Non-Gaussian and Nonlinear Processes
Based on Independent Slow Feature Analysis
por: Li, Chang, et al.
Publicado: (2022) -
Scalable Predictions for Spatial Probit Linear Mixed Models Using Nearest Neighbor Gaussian Processes
por: Saha, Arkajyoti, et al.
Publicado: (2022) -
nnSVG for the scalable identification of spatially variable genes using nearest-neighbor Gaussian processes
por: Weber, Lukas M., et al.
Publicado: (2023) -
Compressed kNN: K-Nearest Neighbors with Data Compression
por: Salvador–Meneses, Jaime, et al.
Publicado: (2019) -
Gravity-Matching Algorithm Based on K-Nearest Neighbor
por: Gao, Shuaipeng, et al.
Publicado: (2022)