Cargando…
Global Analysis of Deep Learning Prediction Using Large-Scale In-House Kinome-Wide Profiling Data
[Image: see text] In drug discovery, the prediction of activity and absorption, distribution, metabolism, excretion, and toxicity parameters is one of the most important approaches in determining which compound to synthesize next. In recent years, prediction methods based on deep learning as well as...
Autores principales: | Moriwaki, Hirotomo, Saito, Shin, Matsumoto, Tomoya, Serizawa, Takayuki, Kunimoto, Ryo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178758/ https://www.ncbi.nlm.nih.gov/pubmed/35694454 http://dx.doi.org/10.1021/acsomega.2c00664 |
Ejemplares similares
-
Large-scale docking approaches to the kinome
por: Schmidt, Denis, et al.
Publicado: (2014) -
Large-scale Discovery of Substrates of the Human Kinome
por: Sugiyama, Naoyuki, et al.
Publicado: (2019) -
Kinome Profiling
por: Peppelenbosch, Maikel P.
Publicado: (2012) -
Large-scale integration of small molecule-induced genome-wide transcriptional responses, Kinome-wide binding affinities and cell-growth inhibition profiles reveal global trends characterizing systems-level drug action
por: Vidović, Dušica, et al.
Publicado: (2014) -
Kinome-wide identification of phosphorylation networks in eukaryotic proteomes
por: Parca, Luca, et al.
Publicado: (2019)