Cargando…
MegaSyn: Integrating Generative Molecular Design, Automated Analog Designer, and Synthetic Viability Prediction
[Image: see text] Generative machine learning models have become widely adopted in drug discovery and other fields to produce new molecules and explore molecular space, with the goal of discovering novel compounds with optimized properties. These generative models are frequently combined with transf...
Autores principales: | Urbina, Fabio, Lowden, Christopher T., Culberson, J. Christopher, Ekins, Sean |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178760/ https://www.ncbi.nlm.nih.gov/pubmed/35694522 http://dx.doi.org/10.1021/acsomega.2c01404 |
Ejemplares similares
-
The automated Galaxy-SynBioCAD pipeline for synthetic biology design and engineering
por: Hérisson, Joan, et al.
Publicado: (2022) -
SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms
por: Van den Bulcke, Tim, et al.
Publicado: (2006) -
Synthetic microbial communities (SynComs) of the human gut: design, assembly, and applications
por: van Leeuwen, Pim T, et al.
Publicado: (2023) -
SynSigGAN: Generative Adversarial Networks for Synthetic Biomedical Signal Generation
por: Hazra, Debapriya, et al.
Publicado: (2020) -
SynSys: A Synthetic Data Generation System for Healthcare Applications
por: Dahmen, Jessamyn, et al.
Publicado: (2019)