Cargando…
Comprehensive study of semi-supervised learning for DNA methylation-based supervised classification of central nervous system tumors
BACKGROUND: Precision medicine for cancer treatment relies on an accurate pathological diagnosis. The number of known tumor classes has increased rapidly, and reliance on traditional methods of histopathologic classification alone has become unfeasible. To help reduce variability, validation costs,...
Autores principales: | Tran, Quynh T., Alom, Md Zahangir, Orr, Brent A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178802/ https://www.ncbi.nlm.nih.gov/pubmed/35676649 http://dx.doi.org/10.1186/s12859-022-04764-1 |
Ejemplares similares
-
PATH-22. COMPARISON OF SUPERVISED CLASSIFICATION METHODS FOR CENTRAL NERVOUS SYSTEM TUMORS BASED ON DNA-METHYLATION
por: Orr, Brent, et al.
Publicado: (2020) -
Self-supervised Learning for Semi-supervised Time Series Classification
por: Jawed, Shayan, et al.
Publicado: (2020) -
Semi-supervised learning /
Publicado: (2010) -
Active semi-supervised learning for biological data classification
por: Camargo, Guilherme, et al.
Publicado: (2020) -
Deep semi-supervised learning for brain tumor classification
por: Ge, Chenjie, et al.
Publicado: (2020)