Cargando…
3D printing for surgical planning of canine oral and maxillofacial surgeries
BACKGROUND: Advanced diagnostic imaging is an essential part of preoperative planning for oral and maxillofacial surgery in veterinary patients. 3-dimensional (3D) printed models and surgical guides generated from diagnostic imaging can provide a deeper understanding of the complex maxillofacial ana...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178851/ https://www.ncbi.nlm.nih.gov/pubmed/35678954 http://dx.doi.org/10.1186/s41205-022-00142-y |
Sumario: | BACKGROUND: Advanced diagnostic imaging is an essential part of preoperative planning for oral and maxillofacial surgery in veterinary patients. 3-dimensional (3D) printed models and surgical guides generated from diagnostic imaging can provide a deeper understanding of the complex maxillofacial anatomy, including relevant spatial relationships. Additionally, patient-specific 3D printed models allow surgeons and trainees to better examine anatomical features through tactile and visuospatial feedback allowing for improved preoperative planning, intraoperative guidance, and enhanced trainee education. Furthermore, these models facilitate discussions with pet owners, allowing for improved owner understanding of pathology, and educated decision-making regarding treatment. CASE PRESENTATION: Our case series consists of three 3D printed models segmented from computed tomography (CT) and cone beam CT (CBCT) and fabricated via desktop vat polymerization for preoperative planning and intraoperative guidance for resection of maxillary osteosarcoma, mandibular reconstruction after mandibulectomy, and gap arthroplasty for temporomandibular joint ankylosis in dogs. CONCLUSIONS: We illustrate multiple benefits and indications for 3D printing in veterinary oral and maxillofacial surgery. 3D printed models facilitate the understanding of complex surgical anatomy, creating an opportunity to assess the spatial relationship of the relevant structures. It facilitates individualized surgical planning by allowing surgeons to tailor and augment the surgical plan by examining patient-specific anatomy and pathology. Surgical steps may also be simulated in advance, including planning of osteotomy lines, and pre-contouring of titanium plates for reconstruction. Additionally, a 3D printed model and surgical guide also serve as invaluable intraoperative reference and guidance. Furthermore, 3D printed models have the potential to improve veterinary resident and student training as well as pet owner understanding and communication regarding the condition of their pets, treatment plan and intended outcomes. |
---|