Cargando…
Sfcnn: a novel scoring function based on 3D convolutional neural network for accurate and stable protein–ligand affinity prediction
BACKGROUND: Computer-aided drug design provides an effective method of identifying lead compounds. However, success rates are significantly bottlenecked by the lack of accurate and reliable scoring functions needed to evaluate binding affinities of protein–ligand complexes. Therefore, many scoring f...
Autores principales: | Wang, Yu, Wei, Zhengxiao, Xi, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178885/ https://www.ncbi.nlm.nih.gov/pubmed/35676617 http://dx.doi.org/10.1186/s12859-022-04762-3 |
Ejemplares similares
-
AK-Score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks
por: Kwon, Yongbeom, et al.
Publicado: (2020) -
SE-OnionNet: A Convolution Neural Network for Protein–Ligand Binding Affinity Prediction
por: Wang, Shudong, et al.
Publicado: (2021) -
BgN-Score and BsN-Score: Bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes
por: Ashtawy, Hossam M, et al.
Publicado: (2015) -
Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities
por: Son, Jeongtae, et al.
Publicado: (2021) -
A Cascade Graph Convolutional Network for Predicting Protein–Ligand Binding Affinity
por: Shen, Huimin, et al.
Publicado: (2021)