Cargando…
Machine-Learning- and Knowledge-Based Scoring Functions Incorporating Ligand and Protein Fingerprints
[Image: see text] We propose a novel machine-learning-based scoring function for drug discovery that incorporates ligand and protein structural information into a knowledge-based PMF score. Molecular docking, a simulation method for structure-based drug design (SBDD), is expected to reduce the enorm...
Autores principales: | Fujimoto, Kazuhiro J., Minami, Shota, Yanai, Takeshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178954/ https://www.ncbi.nlm.nih.gov/pubmed/35694525 http://dx.doi.org/10.1021/acsomega.2c02822 |
Ejemplares similares
-
AutoDock-GIST: Incorporating Thermodynamics of Active-Site Water into Scoring Function for Accurate Protein-Ligand Docking
por: Uehara, Shota, et al.
Publicado: (2016) -
DrugScore(FP): profiling protein-ligand interactions using fingerprint simplicity paired with knowledge-based potential fields
por: Pfeffer, Patrick, et al.
Publicado: (2008) -
XLPFE: A Simple and Effective Machine Learning Scoring
Function for Protein–Ligand Scoring and Ranking
por: Dong, Lina, et al.
Publicado: (2022) -
Enhance the performance of current scoring functions with the aid of 3D protein-ligand interaction fingerprints
por: Liu, Jie, et al.
Publicado: (2017) -
Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins
por: Ashtawy, Hossam M, et al.
Publicado: (2015)