Cargando…
Added Value of Viscoelasticity for MRI-Based Prediction of Ki-67 Expression of Hepatocellular Carcinoma Using a Deep Learning Combined Radiomics (DLCR) Model
SIMPLE SUMMARY: This study aimed to explore the added value of magnetic resonance elastography (MRE) in the prediction of Ki-67 expression in hepatocellular carcinoma (HCC) using a deep learning combined radiomics (DLCR) model. A total of 108 histopathology-proven HCC patients who underwent preopera...
Autores principales: | Hu, Xumei, Zhou, Jiahao, Li, Yan, Wang, Yikun, Guo, Jing, Sack, Ingolf, Chen, Weibo, Yan, Fuhua, Li, Ruokun, Wang, Chengyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9179448/ https://www.ncbi.nlm.nih.gov/pubmed/35681558 http://dx.doi.org/10.3390/cancers14112575 |
Ejemplares similares
-
Added value of CE-CT radiomics to predict high Ki-67 expression in hepatocellular carcinoma
por: Zhao, Yu-meng, et al.
Publicado: (2023) -
Multi-channel GAN–based calibration-free diffusion-weighted liver imaging with simultaneous coil sensitivity estimation and reconstruction
por: Lyu, Jun, et al.
Publicado: (2023) -
CT Radiomics Model for Predicting the Ki-67 Index of Lung Cancer: An Exploratory Study
por: Fu, Qing, et al.
Publicado: (2021) -
Reduced tumor stiffness quantified by tomoelastography as a predicative marker for glypican-3-positive hepatocellular carcinoma
por: Wang, Yihuan, et al.
Publicado: (2022) -
Radiomic prediction models for the level of Ki-67 and p53 in glioma
por: Sun, Xiaojun, et al.
Publicado: (2020)