Cargando…

The Clinical Applications of Liquid Biopsies in Pediatric Brain Tumors: A Systematic Literature Review

SIMPLE SUMMARY: Brain tumors are the most common solid cancer in children and are traditionally diagnosed via a tissue biopsy or resection. Liquid biopsy offers the possibility to characterize brain tumors based on their circulating DNA in blood, cerebrospinal fluid or even urine. Moreover, disease...

Descripción completa

Detalles Bibliográficos
Autores principales: Greuter, Ladina, Frank, Nicole, Guzman, Raphael, Soleman, Jehuda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9179879/
https://www.ncbi.nlm.nih.gov/pubmed/35681663
http://dx.doi.org/10.3390/cancers14112683
Descripción
Sumario:SIMPLE SUMMARY: Brain tumors are the most common solid cancer in children and are traditionally diagnosed via a tissue biopsy or resection. Liquid biopsy offers the possibility to characterize brain tumors based on their circulating DNA in blood, cerebrospinal fluid or even urine. Moreover, disease progress can be monitored accurately and sometimes even detected before radiographic progression. More trials are needed to standardize the use of liquid biopsy in pediatric brain tumors. ABSTRACT: Background: Pediatric brain tumors are the most common solid tumor in children. Traditionally, tumor diagnosis and molecular analysis were carried out on tumor tissue harvested either via biopsy or resection. However, liquid biopsy allows analysis of circulating tumor DNA in corporeal fluids such as cerebrospinal fluid or blood. Methods: We performed a systematic review in Pubmed and Embase regarding the role of liquid biopsy in pediatric brain tumors. Results: Nine studies with a total of 570 patients were included. The preferred corporeal fluid for analysis with a relatively high yield of ct-DNA was cerebrospinal fluid (CSF). For high-grade glioma, liquid biopsy can successfully characterize H3K27mutations and predict tumor progression before it is radiographically detected. Moreover, liquid biopsy has the potential to distinguish between pseudo-progression and actual progression. In medulloblastoma, ct-DNA in the CSF can be used as a surrogate marker of measurable residual disease and correlates with response to therapy and progression of the tumor up to three months before radiographic detection. Conclusion: Liquid biopsy is primarily useful in high-grade pediatric brain tumors such as diffuse midline glioma or medulloblastoma. Disease detection and monitoring is feasible for both tumor entities. More trials to standardize its use for pediatric brain tumors are necessary.