Cargando…
Constrained stochastic optimal control with learned importance sampling: A path integral approach
Modern robotic systems are expected to operate robustly in partially unknown environments. This article proposes an algorithm capable of controlling a wide range of high-dimensional robotic systems in such challenging scenarios. Our method is based on the path integral formulation of stochastic opti...
Autores principales: | Carius, Jan, Ranftl, René, Farshidian, Farbod, Hutter, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9179940/ https://www.ncbi.nlm.nih.gov/pubmed/35694721 http://dx.doi.org/10.1177/02783649211047890 |
Ejemplares similares
-
Learning Environmental Field Exploration with Computationally Constrained Underwater Robots: Gaussian Processes Meet Stochastic Optimal Control
por: Duecker, Daniel Andre, et al.
Publicado: (2019) -
Path integral quantization and stochastic quantization
por: Masujima, Michio
Publicado: (2000) -
Path integral quantization and stochastic quantization
por: Masujima, Michio
Publicado: (2009) -
Path Integral Methods for Stochastic Differential Equations
por: Chow, Carson C., et al.
Publicado: (2015) -
Dynamics of stochastic-constrained particles
por: Guo, Tao
Publicado: (2023)