Cargando…
A Model for Highly Fluctuating Spatio-Temporal Infection Data, with Applications to the COVID Epidemic
Spatio-temporal models need to address specific features of spatio-temporal infection data, such as periods of stable infection levels (endemicity), followed by epidemic phases, as well as infection spread from neighbouring areas. In this paper, we consider a mixture-link model for infection counts...
Autor principal: | Congdon, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9179960/ https://www.ncbi.nlm.nih.gov/pubmed/35682250 http://dx.doi.org/10.3390/ijerph19116669 |
Ejemplares similares
-
A spatio-temporal autoregressive model for monitoring and predicting COVID infection rates
por: Congdon, Peter
Publicado: (2022) -
Spatio-temporal fluctuations in the global airport hierarchies
por: Grubesic, Tony H., et al.
Publicado: (2009) -
Mathematical modeling of spatio-temporal population dynamics and application to epidemic spreading
por: Winkelmann, Stefanie, et al.
Publicado: (2021) -
Spatio-temporal dynamics and quantum fluctuations in semiconductor lasers
por: Gehrig, Edeltraud, et al.
Publicado: (2003) -
Endemic–epidemic models to understand COVID-19 spatio-temporal evolution
por: Celani, Alessandro, et al.
Publicado: (2022)