Cargando…
The Second Class of Tetrahydrofolate (THF-II) Riboswitches Recognizes the Tetrahydrofolic Acid Ligand via Local Conformation Changes
Riboswitches are regulatory noncoding RNAs found in bacteria, fungi and plants, that modulate gene expressions through structural changes in response to ligand binding. Understanding how ligands interact with riboswitches in solution can shed light on the molecular mechanisms of this ancient regulat...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180208/ https://www.ncbi.nlm.nih.gov/pubmed/35682583 http://dx.doi.org/10.3390/ijms23115903 |
_version_ | 1784723461016387584 |
---|---|
author | Zhang, Minmin Liu, Guangfeng Zhang, Yunlong Chen, Ting Feng, Shanshan Cai, Rujie Lu, Changrui |
author_facet | Zhang, Minmin Liu, Guangfeng Zhang, Yunlong Chen, Ting Feng, Shanshan Cai, Rujie Lu, Changrui |
author_sort | Zhang, Minmin |
collection | PubMed |
description | Riboswitches are regulatory noncoding RNAs found in bacteria, fungi and plants, that modulate gene expressions through structural changes in response to ligand binding. Understanding how ligands interact with riboswitches in solution can shed light on the molecular mechanisms of this ancient regulators. Previous studies showed that riboswitches undergo global conformation changes in response to ligand binding to relay information. Here, we report conformation switching models of the recently discovered tetrahydrofolic acid-responsive second class of tetrahydrofolate (THF-II) riboswitches in response to ligand binding. Using a combination of selective 2′-hydroxyl acylation, analyzed by primer extension (SHAPE) assay, 3D modeling and small-angle X-ray scattering (SAXS), we found that the ligand specifically recognizes and reshapes the THF-II riboswitch loop regions, but does not affect the stability of the P3 helix. Our results show that the THF-II riboswitch undergoes only local conformation changes in response to ligand binding, rearranging the Loop1-P3-Loop2 region and rotating Loop1 from a ~120° angle to a ~75° angle. This distinct conformation changes suggest a unique regulatory mechanism of the THF-II riboswitch, previously unseen in other riboswitches. Our findings may contribute to the fields of RNA sensors and drug design. |
format | Online Article Text |
id | pubmed-9180208 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91802082022-06-10 The Second Class of Tetrahydrofolate (THF-II) Riboswitches Recognizes the Tetrahydrofolic Acid Ligand via Local Conformation Changes Zhang, Minmin Liu, Guangfeng Zhang, Yunlong Chen, Ting Feng, Shanshan Cai, Rujie Lu, Changrui Int J Mol Sci Article Riboswitches are regulatory noncoding RNAs found in bacteria, fungi and plants, that modulate gene expressions through structural changes in response to ligand binding. Understanding how ligands interact with riboswitches in solution can shed light on the molecular mechanisms of this ancient regulators. Previous studies showed that riboswitches undergo global conformation changes in response to ligand binding to relay information. Here, we report conformation switching models of the recently discovered tetrahydrofolic acid-responsive second class of tetrahydrofolate (THF-II) riboswitches in response to ligand binding. Using a combination of selective 2′-hydroxyl acylation, analyzed by primer extension (SHAPE) assay, 3D modeling and small-angle X-ray scattering (SAXS), we found that the ligand specifically recognizes and reshapes the THF-II riboswitch loop regions, but does not affect the stability of the P3 helix. Our results show that the THF-II riboswitch undergoes only local conformation changes in response to ligand binding, rearranging the Loop1-P3-Loop2 region and rotating Loop1 from a ~120° angle to a ~75° angle. This distinct conformation changes suggest a unique regulatory mechanism of the THF-II riboswitch, previously unseen in other riboswitches. Our findings may contribute to the fields of RNA sensors and drug design. MDPI 2022-05-25 /pmc/articles/PMC9180208/ /pubmed/35682583 http://dx.doi.org/10.3390/ijms23115903 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Minmin Liu, Guangfeng Zhang, Yunlong Chen, Ting Feng, Shanshan Cai, Rujie Lu, Changrui The Second Class of Tetrahydrofolate (THF-II) Riboswitches Recognizes the Tetrahydrofolic Acid Ligand via Local Conformation Changes |
title | The Second Class of Tetrahydrofolate (THF-II) Riboswitches Recognizes the Tetrahydrofolic Acid Ligand via Local Conformation Changes |
title_full | The Second Class of Tetrahydrofolate (THF-II) Riboswitches Recognizes the Tetrahydrofolic Acid Ligand via Local Conformation Changes |
title_fullStr | The Second Class of Tetrahydrofolate (THF-II) Riboswitches Recognizes the Tetrahydrofolic Acid Ligand via Local Conformation Changes |
title_full_unstemmed | The Second Class of Tetrahydrofolate (THF-II) Riboswitches Recognizes the Tetrahydrofolic Acid Ligand via Local Conformation Changes |
title_short | The Second Class of Tetrahydrofolate (THF-II) Riboswitches Recognizes the Tetrahydrofolic Acid Ligand via Local Conformation Changes |
title_sort | second class of tetrahydrofolate (thf-ii) riboswitches recognizes the tetrahydrofolic acid ligand via local conformation changes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180208/ https://www.ncbi.nlm.nih.gov/pubmed/35682583 http://dx.doi.org/10.3390/ijms23115903 |
work_keys_str_mv | AT zhangminmin thesecondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges AT liuguangfeng thesecondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges AT zhangyunlong thesecondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges AT chenting thesecondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges AT fengshanshan thesecondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges AT cairujie thesecondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges AT luchangrui thesecondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges AT zhangminmin secondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges AT liuguangfeng secondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges AT zhangyunlong secondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges AT chenting secondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges AT fengshanshan secondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges AT cairujie secondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges AT luchangrui secondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges |