Cargando…

The Second Class of Tetrahydrofolate (THF-II) Riboswitches Recognizes the Tetrahydrofolic Acid Ligand via Local Conformation Changes

Riboswitches are regulatory noncoding RNAs found in bacteria, fungi and plants, that modulate gene expressions through structural changes in response to ligand binding. Understanding how ligands interact with riboswitches in solution can shed light on the molecular mechanisms of this ancient regulat...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Minmin, Liu, Guangfeng, Zhang, Yunlong, Chen, Ting, Feng, Shanshan, Cai, Rujie, Lu, Changrui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180208/
https://www.ncbi.nlm.nih.gov/pubmed/35682583
http://dx.doi.org/10.3390/ijms23115903
_version_ 1784723461016387584
author Zhang, Minmin
Liu, Guangfeng
Zhang, Yunlong
Chen, Ting
Feng, Shanshan
Cai, Rujie
Lu, Changrui
author_facet Zhang, Minmin
Liu, Guangfeng
Zhang, Yunlong
Chen, Ting
Feng, Shanshan
Cai, Rujie
Lu, Changrui
author_sort Zhang, Minmin
collection PubMed
description Riboswitches are regulatory noncoding RNAs found in bacteria, fungi and plants, that modulate gene expressions through structural changes in response to ligand binding. Understanding how ligands interact with riboswitches in solution can shed light on the molecular mechanisms of this ancient regulators. Previous studies showed that riboswitches undergo global conformation changes in response to ligand binding to relay information. Here, we report conformation switching models of the recently discovered tetrahydrofolic acid-responsive second class of tetrahydrofolate (THF-II) riboswitches in response to ligand binding. Using a combination of selective 2′-hydroxyl acylation, analyzed by primer extension (SHAPE) assay, 3D modeling and small-angle X-ray scattering (SAXS), we found that the ligand specifically recognizes and reshapes the THF-II riboswitch loop regions, but does not affect the stability of the P3 helix. Our results show that the THF-II riboswitch undergoes only local conformation changes in response to ligand binding, rearranging the Loop1-P3-Loop2 region and rotating Loop1 from a ~120° angle to a ~75° angle. This distinct conformation changes suggest a unique regulatory mechanism of the THF-II riboswitch, previously unseen in other riboswitches. Our findings may contribute to the fields of RNA sensors and drug design.
format Online
Article
Text
id pubmed-9180208
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91802082022-06-10 The Second Class of Tetrahydrofolate (THF-II) Riboswitches Recognizes the Tetrahydrofolic Acid Ligand via Local Conformation Changes Zhang, Minmin Liu, Guangfeng Zhang, Yunlong Chen, Ting Feng, Shanshan Cai, Rujie Lu, Changrui Int J Mol Sci Article Riboswitches are regulatory noncoding RNAs found in bacteria, fungi and plants, that modulate gene expressions through structural changes in response to ligand binding. Understanding how ligands interact with riboswitches in solution can shed light on the molecular mechanisms of this ancient regulators. Previous studies showed that riboswitches undergo global conformation changes in response to ligand binding to relay information. Here, we report conformation switching models of the recently discovered tetrahydrofolic acid-responsive second class of tetrahydrofolate (THF-II) riboswitches in response to ligand binding. Using a combination of selective 2′-hydroxyl acylation, analyzed by primer extension (SHAPE) assay, 3D modeling and small-angle X-ray scattering (SAXS), we found that the ligand specifically recognizes and reshapes the THF-II riboswitch loop regions, but does not affect the stability of the P3 helix. Our results show that the THF-II riboswitch undergoes only local conformation changes in response to ligand binding, rearranging the Loop1-P3-Loop2 region and rotating Loop1 from a ~120° angle to a ~75° angle. This distinct conformation changes suggest a unique regulatory mechanism of the THF-II riboswitch, previously unseen in other riboswitches. Our findings may contribute to the fields of RNA sensors and drug design. MDPI 2022-05-25 /pmc/articles/PMC9180208/ /pubmed/35682583 http://dx.doi.org/10.3390/ijms23115903 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhang, Minmin
Liu, Guangfeng
Zhang, Yunlong
Chen, Ting
Feng, Shanshan
Cai, Rujie
Lu, Changrui
The Second Class of Tetrahydrofolate (THF-II) Riboswitches Recognizes the Tetrahydrofolic Acid Ligand via Local Conformation Changes
title The Second Class of Tetrahydrofolate (THF-II) Riboswitches Recognizes the Tetrahydrofolic Acid Ligand via Local Conformation Changes
title_full The Second Class of Tetrahydrofolate (THF-II) Riboswitches Recognizes the Tetrahydrofolic Acid Ligand via Local Conformation Changes
title_fullStr The Second Class of Tetrahydrofolate (THF-II) Riboswitches Recognizes the Tetrahydrofolic Acid Ligand via Local Conformation Changes
title_full_unstemmed The Second Class of Tetrahydrofolate (THF-II) Riboswitches Recognizes the Tetrahydrofolic Acid Ligand via Local Conformation Changes
title_short The Second Class of Tetrahydrofolate (THF-II) Riboswitches Recognizes the Tetrahydrofolic Acid Ligand via Local Conformation Changes
title_sort second class of tetrahydrofolate (thf-ii) riboswitches recognizes the tetrahydrofolic acid ligand via local conformation changes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180208/
https://www.ncbi.nlm.nih.gov/pubmed/35682583
http://dx.doi.org/10.3390/ijms23115903
work_keys_str_mv AT zhangminmin thesecondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges
AT liuguangfeng thesecondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges
AT zhangyunlong thesecondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges
AT chenting thesecondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges
AT fengshanshan thesecondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges
AT cairujie thesecondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges
AT luchangrui thesecondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges
AT zhangminmin secondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges
AT liuguangfeng secondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges
AT zhangyunlong secondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges
AT chenting secondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges
AT fengshanshan secondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges
AT cairujie secondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges
AT luchangrui secondclassoftetrahydrofolatethfiiriboswitchesrecognizesthetetrahydrofolicacidligandvialocalconformationchanges