Cargando…
Automated Machine Learning (AutoML)-Derived Preconception Predictive Risk Model to Guide Early Intervention for Gestational Diabetes Mellitus
The increasing prevalence of gestational diabetes mellitus (GDM) is contributing to the rising global burden of type 2 diabetes (T2D) and intergenerational cycle of chronic metabolic disorders. Primary lifestyle interventions to manage GDM, including second trimester dietary and exercise guidance, h...
Autores principales: | Kumar, Mukkesh, Ang, Li Ting, Png, Hang, Ng, Maisie, Tan, Karen, Loy, See Ling, Tan, Kok Hian, Chan, Jerry Kok Yen, Godfrey, Keith M., Chan, Shiao-yng, Chong, Yap Seng, Eriksson, Johan G., Feng, Mengling, Karnani, Neerja |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180245/ https://www.ncbi.nlm.nih.gov/pubmed/35682375 http://dx.doi.org/10.3390/ijerph19116792 |
Ejemplares similares
-
Machine Learning–Derived Prenatal Predictive Risk Model to Guide Intervention and Prevent the Progression of Gestational Diabetes Mellitus to Type 2 Diabetes: Prediction Model Development Study
por: Kumar, Mukkesh, et al.
Publicado: (2022) -
AutoML for Fast Simulation
por: Nascimento Ferreira, Poliana
Publicado: (2021) -
Fecundability in reproductive aged women at risk of sexual dysfunction and associated risk factors: a prospective preconception cohort study
por: Loy, See Ling, et al.
Publicado: (2021) -
Risk score to stratify miscarriage risk levels in preconception women
por: Choo, Xin Hui, et al.
Publicado: (2021) -
Plasma lipidomic profiling reveals metabolic adaptations to pregnancy and signatures of cardiometabolic risk: a preconception and longitudinal cohort study
por: Chen, Li, et al.
Publicado: (2023)