Cargando…

COIBar-RFLP Molecular Strategy Discriminates Species and Unveils Commercial Frauds in Fishery Products

The DNA analysis is the best approach to authenticate species in seafood products and to unveil frauds based on species substitution. In this study, a molecular strategy coupling Cytochrome Oxidase I (COI) DNA barcoding with the consolidated methodology of Restriction Fragment Length Polymorphisms (...

Descripción completa

Detalles Bibliográficos
Autores principales: Pappalardo, Anna Maria, Giuga, Marta, Raffa, Alessandra, Nania, Marco, Rossitto, Luana, Calogero, Giada Santa, Ferrito, Venera
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180250/
https://www.ncbi.nlm.nih.gov/pubmed/35681319
http://dx.doi.org/10.3390/foods11111569
Descripción
Sumario:The DNA analysis is the best approach to authenticate species in seafood products and to unveil frauds based on species substitution. In this study, a molecular strategy coupling Cytochrome Oxidase I (COI) DNA barcoding with the consolidated methodology of Restriction Fragment Length Polymorphisms (RFLPs), named COIBar-RFLP, was applied for searching pattern of restriction enzyme digestion, useful to discriminate seven different fish species (juveniles of Engraulis encrasicolus and Sardina pilchardus sold in Italy as “bianchetto” and Aphia minuta sold as “rossetto”; icefish Neosalanx tangkahkeii; European perch, Perca fluviatilis and the Nile Perch, Lates niloticus; striped catfish, Pangasianodon hypophthalmus). A total of 30 fresh and frozen samples were processed for DNA barcoding, analyzed against a barcode library of COI sequences retrieved from GenBank, and validated for COIBar–RFLP analysis. Cases of misdescription were detected: 3 samples labeled as “bianchetto” were substituted by N. tangkahkeii (2 samples) and A. minuta (1 sample); 3 samples labeled as “persico reale” (P. fluviatilis) were substituted by L. niloticus and P. hypophthalmus. All species were simultaneously discriminated through the restriction pattern obtained with MspI enzyme. The results highlighted that the COIBar-RFLP could be an effective tool to authenticate fish in seafood products by responding to the emerging interest in molecular identification technologies.