Cargando…

Computer-Aided Diagnosis of Coal Workers’ Pneumoconiosis in Chest X-ray Radiographs Using Machine Learning: A Systematic Literature Review

Computer-aided diagnostic (CAD) systems can assist radiologists in detecting coal workers’ pneumoconiosis (CWP) in their chest X-rays. Early diagnosis of the CWP can significantly improve workers’ survival rate. The development of the CAD systems will reduce risk in the workplace and improve the qua...

Descripción completa

Detalles Bibliográficos
Autores principales: Devnath, Liton, Summons, Peter, Luo, Suhuai, Wang, Dadong, Shaukat, Kamran, Hameed, Ibrahim A., Aljuaid, Hanan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180284/
https://www.ncbi.nlm.nih.gov/pubmed/35682023
http://dx.doi.org/10.3390/ijerph19116439
Descripción
Sumario:Computer-aided diagnostic (CAD) systems can assist radiologists in detecting coal workers’ pneumoconiosis (CWP) in their chest X-rays. Early diagnosis of the CWP can significantly improve workers’ survival rate. The development of the CAD systems will reduce risk in the workplace and improve the quality of chest screening for CWP diseases. This systematic literature review (SLR) amis to categorise and summarise the feature extraction and detection approaches of computer-based analysis in CWP using chest X-ray radiographs (CXR). We conducted the SLR method through 11 databases that focus on science, engineering, medicine, health, and clinical studies. The proposed SLR identified and compared 40 articles from the last 5 decades, covering three main categories of computer-based CWP detection: classical handcrafted features-based image analysis, traditional machine learning, and deep learning-based methods. Limitations of this review and future improvement of the review are also discussed.