Cargando…
Clinical Network for Big Data and Personalized Health: Study Protocol and Preliminary Results
The use of secondary hospital-based clinical data and electronical health records (EHR) represent a cost-efficient alternative to investigate chronic conditions. We present the Clinical Network Big Data and Personalised Health project, which collects EHRs for patients accessing hospitals in Central-...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180513/ https://www.ncbi.nlm.nih.gov/pubmed/35681950 http://dx.doi.org/10.3390/ijerph19116365 |
Sumario: | The use of secondary hospital-based clinical data and electronical health records (EHR) represent a cost-efficient alternative to investigate chronic conditions. We present the Clinical Network Big Data and Personalised Health project, which collects EHRs for patients accessing hospitals in Central-Southern Italy, through an integrated digital platform to create a digital hub for the collection, management and analysis of personal, clinical and environmental information for patients, associated with a biobank to perform multi-omic analyses. A total of 12,864 participants (61.7% women, mean age 52.6 ± 17.6 years) signed a written informed consent to allow access to their EHRs. The majority of hospital access was in obstetrics and gynaecology (36.3%), while the main reason for hospitalization was represented by diseases of the circulatory system (21.2%). Participants had a secondary education (63.5%), were mostly retired (25.45%), reported low levels of physical activity (59.6%), had low adherence to the Mediterranean diet and were smokers (30.2%). A large percentage (35.8%) were overweight and the prevalence of hypertension, diabetes and hyperlipidemia was 36.4%, 11.1% and 19.6%, respectively. Blood samples were retrieved for 8686 patients (67.5%). This project is aimed at creating a digital hub for the collection, management and analysis of personal, clinical, diagnostic and environmental information for patients, and is associated with a biobank to perform multi-omic analyses. |
---|