Cargando…
Electricity Generation Forecast of Shanghai Municipal Solid Waste Based on Bidirectional Long Short-Term Memory Model
The accurate prediction of Municipal Solid Waste (MSW) electricity generation is very important for the fine management of a city. This paper selects Shanghai as the research object, through the construction of a Bidirectional Long Short-Term Memory (BiLSTM) model, and chooses six influencing factor...
Autores principales: | Liu, Bingchun, Zhang, Ningbo, Wang, Lingli, Zhang, Xinming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180520/ https://www.ncbi.nlm.nih.gov/pubmed/35682200 http://dx.doi.org/10.3390/ijerph19116616 |
Ejemplares similares
-
Long short-term memory neural network and improved particle swarm optimization–based modeling and scenario analysis for municipal solid waste generation in Shanghai, China
por: Wang, Deyun, et al.
Publicado: (2022) -
Simulated Annealing Based Hybrid Forecast for Improving Daily Municipal Solid Waste Generation Prediction
por: Song, Jingwei, et al.
Publicado: (2014) -
New Policy and Implementation of Municipal Solid Waste Classification in Shanghai, China
por: Zhou, Ming-Hui, et al.
Publicado: (2019) -
Assessing the implementation effect of Shanghai’s compulsory municipal solid waste classification policy
por: Chu, Xu, et al.
Publicado: (2023) -
Time Series Electrical Motor Drives Forecasting Based on Simulation Modeling and Bidirectional Long-Short Term Memory
por: Le, Thi-Thu-Huong, et al.
Publicado: (2023)