Cargando…
Predicting CRISPR/Cas9 Repair Outcomes by Attention-Based Deep Learning Framework
As a simple and programmable nuclease-based genome editing tool, the CRISPR/Cas9 system has been widely used in target-gene repair and gene-expression regulation. The DNA mutation generated by CRISPR/Cas9-mediated double-strand breaks determines its biological and phenotypic effects. Experiments hav...
Autores principales: | Liu, Xiuqin, Wang, Shuya, Ai, Dongmei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180579/ https://www.ncbi.nlm.nih.gov/pubmed/35681543 http://dx.doi.org/10.3390/cells11111847 |
Ejemplares similares
-
CROTON: an automated and variant-aware deep learning framework for predicting CRISPR/Cas9 editing outcomes
por: Li, Victoria R, et al.
Publicado: (2021) -
Global detection of DNA repair outcomes induced by CRISPR–Cas9
por: Liu, Mengzhu, et al.
Publicado: (2021) -
Off-target predictions in CRISPR-Cas9 gene editing using deep learning
por: Lin, Jiecong, et al.
Publicado: (2018) -
piCRISPR: Physically informed deep learning models for CRISPR/Cas9 off-target cleavage prediction
por: Störtz, Florian, et al.
Publicado: (2023) -
CRISPR–Cas9 gRNA efficiency prediction: an overview of predictive tools and the role of deep learning
por: Konstantakos, Vasileios, et al.
Publicado: (2022)