Cargando…
Quantifying the Impact of Alternative Bus Stop Platforms on Vehicle Emissions and Individual Pollution Exposure at Bus Stops
Due to stop-and-go events, bus stops are often treated as “hot spots” for air pollution. The design of bus stops should be optimized to reduce emissions and exposure for transit commuters. The objective of this study was to analyze the impact of bus stop platform types on vehicle emissions and indiv...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180670/ https://www.ncbi.nlm.nih.gov/pubmed/35682138 http://dx.doi.org/10.3390/ijerph19116552 |
_version_ | 1784723577201754112 |
---|---|
author | Yu, Qian Lu, Lili Li, Tiezhu Tu, Ran |
author_facet | Yu, Qian Lu, Lili Li, Tiezhu Tu, Ran |
author_sort | Yu, Qian |
collection | PubMed |
description | Due to stop-and-go events, bus stops are often treated as “hot spots” for air pollution. The design of bus stops should be optimized to reduce emissions and exposure for transit commuters. The objective of this study was to analyze the impact of bus stop platform types on vehicle emissions and individual pollution exposure. Second-by-second emissions data were first collected from one bus using a portable emission measurement system (PEMS). Microscopic traffic simulation was then used to estimate overall traffic emissions under six scenarios with different bus stop settings. Numerical simulation of pollutant dispersion was also conducted to calculate individual pollution exposure at bus stops. The results of PEMS tests showed no significant differences between bus emissions generated near two different types of stops. However, the effect of platform types on overall traffic emissions was revealed using traffic simulation. The results demonstrated that bus bays reduced the emissions of other heavy-duty vehicles. However, bus bays were not always effective during rush hours. The study also highlighted the importance of the location of bus stops, the number of bus lines, and the length of the platform, in addition to dynamic characteristics of traffic flows in the design of bus stop platforms. Bus stop platforms also affected individuals’ exposure due to the changes in the pollutant flow field. The passenger’s exposure at one bus stop was influenced by both the platform type and standing location. Results suggested that in a condition with a wind direction perpendicular to the bus stop shelter, the total exposure level to CO was lower at the bus bay stop if a passenger stood at the upstream of the station platform. However, the exposure was less at the downstream of the curbside bus stop. |
format | Online Article Text |
id | pubmed-9180670 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91806702022-06-10 Quantifying the Impact of Alternative Bus Stop Platforms on Vehicle Emissions and Individual Pollution Exposure at Bus Stops Yu, Qian Lu, Lili Li, Tiezhu Tu, Ran Int J Environ Res Public Health Article Due to stop-and-go events, bus stops are often treated as “hot spots” for air pollution. The design of bus stops should be optimized to reduce emissions and exposure for transit commuters. The objective of this study was to analyze the impact of bus stop platform types on vehicle emissions and individual pollution exposure. Second-by-second emissions data were first collected from one bus using a portable emission measurement system (PEMS). Microscopic traffic simulation was then used to estimate overall traffic emissions under six scenarios with different bus stop settings. Numerical simulation of pollutant dispersion was also conducted to calculate individual pollution exposure at bus stops. The results of PEMS tests showed no significant differences between bus emissions generated near two different types of stops. However, the effect of platform types on overall traffic emissions was revealed using traffic simulation. The results demonstrated that bus bays reduced the emissions of other heavy-duty vehicles. However, bus bays were not always effective during rush hours. The study also highlighted the importance of the location of bus stops, the number of bus lines, and the length of the platform, in addition to dynamic characteristics of traffic flows in the design of bus stop platforms. Bus stop platforms also affected individuals’ exposure due to the changes in the pollutant flow field. The passenger’s exposure at one bus stop was influenced by both the platform type and standing location. Results suggested that in a condition with a wind direction perpendicular to the bus stop shelter, the total exposure level to CO was lower at the bus bay stop if a passenger stood at the upstream of the station platform. However, the exposure was less at the downstream of the curbside bus stop. MDPI 2022-05-27 /pmc/articles/PMC9180670/ /pubmed/35682138 http://dx.doi.org/10.3390/ijerph19116552 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yu, Qian Lu, Lili Li, Tiezhu Tu, Ran Quantifying the Impact of Alternative Bus Stop Platforms on Vehicle Emissions and Individual Pollution Exposure at Bus Stops |
title | Quantifying the Impact of Alternative Bus Stop Platforms on Vehicle Emissions and Individual Pollution Exposure at Bus Stops |
title_full | Quantifying the Impact of Alternative Bus Stop Platforms on Vehicle Emissions and Individual Pollution Exposure at Bus Stops |
title_fullStr | Quantifying the Impact of Alternative Bus Stop Platforms on Vehicle Emissions and Individual Pollution Exposure at Bus Stops |
title_full_unstemmed | Quantifying the Impact of Alternative Bus Stop Platforms on Vehicle Emissions and Individual Pollution Exposure at Bus Stops |
title_short | Quantifying the Impact of Alternative Bus Stop Platforms on Vehicle Emissions and Individual Pollution Exposure at Bus Stops |
title_sort | quantifying the impact of alternative bus stop platforms on vehicle emissions and individual pollution exposure at bus stops |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180670/ https://www.ncbi.nlm.nih.gov/pubmed/35682138 http://dx.doi.org/10.3390/ijerph19116552 |
work_keys_str_mv | AT yuqian quantifyingtheimpactofalternativebusstopplatformsonvehicleemissionsandindividualpollutionexposureatbusstops AT lulili quantifyingtheimpactofalternativebusstopplatformsonvehicleemissionsandindividualpollutionexposureatbusstops AT litiezhu quantifyingtheimpactofalternativebusstopplatformsonvehicleemissionsandindividualpollutionexposureatbusstops AT turan quantifyingtheimpactofalternativebusstopplatformsonvehicleemissionsandindividualpollutionexposureatbusstops |