Cargando…
Nutrition and Sensory Evaluation of Solid-State Fermented Brown Rice Based on Cluster and Principal Component Analysis
Consumption of brown rice (BR) contributes to the implementation of the grain-saving policy and improvement of residents’ nutrient status. However, the undesirable cooking properties, poor palatability, and presence of anti-nutritional factors limit the demand of BR products. To enhance its quality,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180828/ https://www.ncbi.nlm.nih.gov/pubmed/35681309 http://dx.doi.org/10.3390/foods11111560 |
Sumario: | Consumption of brown rice (BR) contributes to the implementation of the grain-saving policy and improvement of residents’ nutrient status. However, the undesirable cooking properties, poor palatability, and presence of anti-nutritional factors limit the demand of BR products. To enhance its quality, BR was solid-state fermented with single and mixed strains of Lb. plantarum, S. cerevisiae, R. oryzae, A. oryzae, and N. sitophila. Effects of solid-state fermentation (SSF) with different strains on the nutrition and sensory characteristics of BR were analyzed by spectroscopic method, chromatography, and sensory assessment. Contents of arabinoxylans, β-glucan, γ-oryzanol, phenolic, and flavonoid were significantly increased by 41.61%, 136.02%, 30.51%, 106.90%, and 65.08% after SSF, respectively (p < 0.05), while the insoluble dietary fiber and phytic acid contents reduced by 42.69% and 55.92%. The brightness and sensory score of BR significantly improved after SSF. Furthermore, cluster analysis (CA) and principal component analysis (PCA) were employed to evaluate BR quality. Three clusters were obtained according to CA, including BR fermented for 30 h and 48 h, BR fermented for 12 h, and the control group. Based on PCA, the best SSF processing technology was BR fermented with Lb. plantarum (0.5%, v/w) and S. cerevisiae (0.5%, v/w) at 28 °C for 48 h (liquid-to-solid ratio 3:10). |
---|