Cargando…
Substituted Syndecan-2-Derived Mimetic Peptides Show Improved Antitumor Activity over the Parent Syndecan-2-Derived Peptide
We previously showed that a synthetic peptide (S2-P) corresponding to a portion of the human syndecan-2 (SDC2) sequence can bind to the pro-domain of matrix metalloproteinase-7 (MMP-7) to inhibit colon cancer activities. Since S2-P had a relatively weak binding affinity for the MMP-7 pro-domain, we...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180903/ https://www.ncbi.nlm.nih.gov/pubmed/35682569 http://dx.doi.org/10.3390/ijms23115888 |
_version_ | 1784723634221219840 |
---|---|
author | Jang, Bohee Kim, Ayoung Lee, Yejin Hwang, Jisun Sung, Jee-Young Jang, Eun-Ju Kim, Yong-Nyun Yun, Ji-Hye Han, Jeongmin Song, Ji-Joon Lee, Weontae Oh, Eok-Soo |
author_facet | Jang, Bohee Kim, Ayoung Lee, Yejin Hwang, Jisun Sung, Jee-Young Jang, Eun-Ju Kim, Yong-Nyun Yun, Ji-Hye Han, Jeongmin Song, Ji-Joon Lee, Weontae Oh, Eok-Soo |
author_sort | Jang, Bohee |
collection | PubMed |
description | We previously showed that a synthetic peptide (S2-P) corresponding to a portion of the human syndecan-2 (SDC2) sequence can bind to the pro-domain of matrix metalloproteinase-7 (MMP-7) to inhibit colon cancer activities. Since S2-P had a relatively weak binding affinity for the MMP-7 pro-domain, we herein modified the amino acid sequence of S2-P to improve the anticancer potential. On the basis of the interaction structure of S2-P and MMP-7, four peptides were generated by replacing amino acids near Tyr 51, which is critical for the interaction. The SDC2-mimetic peptides harboring an Ala-to-Asp substitution at the C-terminal side of Tyr 51 (S2-D) or with an Ala-to-Phe substitution at the N-terminal side of Tyr 51 and an Ala-to-Asp substitution at the C-terminal side of Tyr 51 (S2-FE) showed improved interaction affinities for the MMP-7 pro-domain. Compared to S2-P, S2-FE was better able to inhibit the SDC2–MMP-7 interaction, the cell surface localization of MMP-7, the gelatin degradation activity of MMP-7, and the cancer activities (cell migration, invasion, and colony-forming activity) of human HCT116 colon cancer cells in vitro. In vivo, S2-FE inhibited the primary tumor growth and lung metastasis of CT26 mouse colon cancer cells in a xenograft mouse model. Together, these data suggest that S2-FE could be useful therapeutic anticancer peptides for colon cancer. |
format | Online Article Text |
id | pubmed-9180903 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91809032022-06-10 Substituted Syndecan-2-Derived Mimetic Peptides Show Improved Antitumor Activity over the Parent Syndecan-2-Derived Peptide Jang, Bohee Kim, Ayoung Lee, Yejin Hwang, Jisun Sung, Jee-Young Jang, Eun-Ju Kim, Yong-Nyun Yun, Ji-Hye Han, Jeongmin Song, Ji-Joon Lee, Weontae Oh, Eok-Soo Int J Mol Sci Article We previously showed that a synthetic peptide (S2-P) corresponding to a portion of the human syndecan-2 (SDC2) sequence can bind to the pro-domain of matrix metalloproteinase-7 (MMP-7) to inhibit colon cancer activities. Since S2-P had a relatively weak binding affinity for the MMP-7 pro-domain, we herein modified the amino acid sequence of S2-P to improve the anticancer potential. On the basis of the interaction structure of S2-P and MMP-7, four peptides were generated by replacing amino acids near Tyr 51, which is critical for the interaction. The SDC2-mimetic peptides harboring an Ala-to-Asp substitution at the C-terminal side of Tyr 51 (S2-D) or with an Ala-to-Phe substitution at the N-terminal side of Tyr 51 and an Ala-to-Asp substitution at the C-terminal side of Tyr 51 (S2-FE) showed improved interaction affinities for the MMP-7 pro-domain. Compared to S2-P, S2-FE was better able to inhibit the SDC2–MMP-7 interaction, the cell surface localization of MMP-7, the gelatin degradation activity of MMP-7, and the cancer activities (cell migration, invasion, and colony-forming activity) of human HCT116 colon cancer cells in vitro. In vivo, S2-FE inhibited the primary tumor growth and lung metastasis of CT26 mouse colon cancer cells in a xenograft mouse model. Together, these data suggest that S2-FE could be useful therapeutic anticancer peptides for colon cancer. MDPI 2022-05-24 /pmc/articles/PMC9180903/ /pubmed/35682569 http://dx.doi.org/10.3390/ijms23115888 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jang, Bohee Kim, Ayoung Lee, Yejin Hwang, Jisun Sung, Jee-Young Jang, Eun-Ju Kim, Yong-Nyun Yun, Ji-Hye Han, Jeongmin Song, Ji-Joon Lee, Weontae Oh, Eok-Soo Substituted Syndecan-2-Derived Mimetic Peptides Show Improved Antitumor Activity over the Parent Syndecan-2-Derived Peptide |
title | Substituted Syndecan-2-Derived Mimetic Peptides Show Improved Antitumor Activity over the Parent Syndecan-2-Derived Peptide |
title_full | Substituted Syndecan-2-Derived Mimetic Peptides Show Improved Antitumor Activity over the Parent Syndecan-2-Derived Peptide |
title_fullStr | Substituted Syndecan-2-Derived Mimetic Peptides Show Improved Antitumor Activity over the Parent Syndecan-2-Derived Peptide |
title_full_unstemmed | Substituted Syndecan-2-Derived Mimetic Peptides Show Improved Antitumor Activity over the Parent Syndecan-2-Derived Peptide |
title_short | Substituted Syndecan-2-Derived Mimetic Peptides Show Improved Antitumor Activity over the Parent Syndecan-2-Derived Peptide |
title_sort | substituted syndecan-2-derived mimetic peptides show improved antitumor activity over the parent syndecan-2-derived peptide |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180903/ https://www.ncbi.nlm.nih.gov/pubmed/35682569 http://dx.doi.org/10.3390/ijms23115888 |
work_keys_str_mv | AT jangbohee substitutedsyndecan2derivedmimeticpeptidesshowimprovedantitumoractivityovertheparentsyndecan2derivedpeptide AT kimayoung substitutedsyndecan2derivedmimeticpeptidesshowimprovedantitumoractivityovertheparentsyndecan2derivedpeptide AT leeyejin substitutedsyndecan2derivedmimeticpeptidesshowimprovedantitumoractivityovertheparentsyndecan2derivedpeptide AT hwangjisun substitutedsyndecan2derivedmimeticpeptidesshowimprovedantitumoractivityovertheparentsyndecan2derivedpeptide AT sungjeeyoung substitutedsyndecan2derivedmimeticpeptidesshowimprovedantitumoractivityovertheparentsyndecan2derivedpeptide AT jangeunju substitutedsyndecan2derivedmimeticpeptidesshowimprovedantitumoractivityovertheparentsyndecan2derivedpeptide AT kimyongnyun substitutedsyndecan2derivedmimeticpeptidesshowimprovedantitumoractivityovertheparentsyndecan2derivedpeptide AT yunjihye substitutedsyndecan2derivedmimeticpeptidesshowimprovedantitumoractivityovertheparentsyndecan2derivedpeptide AT hanjeongmin substitutedsyndecan2derivedmimeticpeptidesshowimprovedantitumoractivityovertheparentsyndecan2derivedpeptide AT songjijoon substitutedsyndecan2derivedmimeticpeptidesshowimprovedantitumoractivityovertheparentsyndecan2derivedpeptide AT leeweontae substitutedsyndecan2derivedmimeticpeptidesshowimprovedantitumoractivityovertheparentsyndecan2derivedpeptide AT oheoksoo substitutedsyndecan2derivedmimeticpeptidesshowimprovedantitumoractivityovertheparentsyndecan2derivedpeptide |