Cargando…

Prediction of Carotid In-Stent Restenosis by Computed Tomography Angiography Carotid Plaque-Based Radiomics

In-stent restenosis (ISR) after carotid artery stenting (CAS) critically influences long-term CAS benefits and safety. The study was aimed at screening preoperative ISR-predictive features and developing predictive models. Thus, we retrospectively analyzed clinical and imaging data of 221 patients w...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Xiaoqing, Dong, Zheng, Liu, Jia, Li, Hongxia, Zhou, Changsheng, Zhang, Fandong, Wang, Churan, Zhang, Zhiqiang, Lu, Guangming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180993/
https://www.ncbi.nlm.nih.gov/pubmed/35683623
http://dx.doi.org/10.3390/jcm11113234
Descripción
Sumario:In-stent restenosis (ISR) after carotid artery stenting (CAS) critically influences long-term CAS benefits and safety. The study was aimed at screening preoperative ISR-predictive features and developing predictive models. Thus, we retrospectively analyzed clinical and imaging data of 221 patients who underwent pre-CAS carotid computed tomography angiography (CTA) and whose digital subtraction angiography data for verifying ISR presence were available. Carotid plaque characteristics determined using CTA were used to build a traditional model. Backward elimination (likelihood ratio) was used for the radiomics model. Furthermore, a combined model was built using the traditional and radiomics features. Five-fold cross-validation was used to evaluate the accuracy of the trained classifier and stability of the selected features. Follow-up angiography showed ISR in 30 patients. Carotid plaque length and thickness were independently associated with ISR (multivariate analysis); regarding the conventional model, the area under the curve (AUC) was 0.84 and 0.82 in the training and validation cohorts, respectively. The corresponding AUC values for the radiomics-based model were 0.87 and 0.82, and those for the optimal combined model were 0.88 and 0.83. Plaque length and thickness could independently predict post-CAS ISR, and the combination of radiomics and plaque features afforded the best predictive performance.