Cargando…

Shear Strength of Nano Silica High-Strength Reinforced Concrete Beams

In this study, the shear strength of sixteen full-scale over-reinforced concrete beams with and without nano silica (NS), constructed from high-strength concrete (HSC), was investigated both experimentally and analytically. Nano silica was used as a partial replacement for Portland cement. According...

Descripción completa

Detalles Bibliográficos
Autores principales: El-Mandouh, Mahmoud A., Kaloop, Mosbeh R., Hu, Jong-Wan, Abd El-Maula, Ahmed S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181018/
https://www.ncbi.nlm.nih.gov/pubmed/35683055
http://dx.doi.org/10.3390/ma15113755
Descripción
Sumario:In this study, the shear strength of sixteen full-scale over-reinforced concrete beams with and without nano silica (NS), constructed from high-strength concrete (HSC), was investigated both experimentally and analytically. Nano silica was used as a partial replacement for Portland cement. According to the NS ratio, the tested beams were divided into four groups: 0%, 1%, 2%, and 3%. Shear span to effective depth (a/d) ratios of 1.5 and 2.5 were used in each group, and two different stirrups ratios (ρ(v)) were employed as 0% and 0.38%. The shear strength provisions used by some international codes, such as the American Concrete Institute (ACI-2019), the Eurocode 2 (EC-2), and the Egyptian Code (ECP 207), were examined when applied to HSC beams with and without NS. The most important factors to consider were the effect of using NS on the shear span to effective depth (a/d) ratio and the shear strength of the beams with and without stirrups. The experimental results were validated using a nonlinear finite element analysis using the computer program ABAQUS. The experimental results showed that increasing the NS ratio reduced the number of cracks, and increased the cracks spacing, as well as reducing crack width. In specimens without stirrups, these effects were more obvious. A rise in the (a/d) ratio increased the number of cracks along the beam length, notably in the mid-span region. For specimens without stirrups and with an (a/d) of 1.5, raising NS from 0% to 1%, 2%, and 3% increased the ultimate load by 13%, 30%, and 39%, respectively, whereas for specimens with an (a/d) of 2.5, the ultimate load increased with approximately the same increase as that in beams with an (a/d) of 1.5 due to using NS. Additionally, the addition of NS to concrete boosted the contribution of the concrete to the shear strength, as shown by the results of beams without stirrups. For specimens with stirrups and an (a/d) of 1.5, raising NS from 0% to 1%, 2%, and 3% increased the ultimate load by 8%, 21%, and 30%, respectively. Additionally, for specimens with stirrups and an (a/d) of 2.5, the ultimate load increased with approximately the same increase as that in beams with stirrups and an (a/d) of 1.5 due to using NS. The test findings indicate that the shear strength calculated using the equations of the ACI 318-19 is more conservative than EC-2 and ECP 207 for NS concrete beams. The finite element program ABAQUS may be successfully used to predict the shear strength of NS concrete beams.