Cargando…
Enhanced Extracellular Transfer of HLA-DQ Activates CD3(+) Lymphocytes towards Compromised Treg Induction in Celiac Disease
Celiac disease (CeD) manifests with autoimmune intestinal inflammation from gluten and genetic predisposition linked to human leukocyte antigen class-II (HLA-II) gene variants. Antigen-presenting cells facilitate gluten exposition through the interaction of their surface major histocompatibility com...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181181/ https://www.ncbi.nlm.nih.gov/pubmed/35682780 http://dx.doi.org/10.3390/ijms23116102 |
_version_ | 1784723705265389568 |
---|---|
author | Hudec, Michael Juříčková, Iva Riegerová, Kamila Ovsepian, Saak V. Černá, Marie O’Leary, Valerie Bríd |
author_facet | Hudec, Michael Juříčková, Iva Riegerová, Kamila Ovsepian, Saak V. Černá, Marie O’Leary, Valerie Bríd |
author_sort | Hudec, Michael |
collection | PubMed |
description | Celiac disease (CeD) manifests with autoimmune intestinal inflammation from gluten and genetic predisposition linked to human leukocyte antigen class-II (HLA-II) gene variants. Antigen-presenting cells facilitate gluten exposition through the interaction of their surface major histocompatibility complex (MHC) with the T cell receptor (TCR) on T lymphocytes. This fundamental mechanism of adaptive immunity has broadened upon recognition of extracellular exosomal MHC, raising awareness of an alternative means for antigen presentation. This study demonstrates that conditioned growth media (CGM) previously exposed to monocyte-derived dendritic cells from CeD significantly downregulates the CD3(+) lineage marker of control T cells. Such increased activation was reflected in their elevated IL-2 secretion. Exosome localization motif identification and quantification within HLA-DQA1 and HLA-DQB1 transcripts highlighted their significant prevalence within HLA-DQB1 alleles associated with CeD susceptibility. Flow cytometry revealed the strong correlation between HLA-DQ and the CD63 exosomal marker in T cells exposed to CGM from MoDCs sourced from CeD patients. This resulted in lower concentrations of CD25(+) CD127(−) T cells, suggestive of their compromised induction to T-regulatory cells associated with CeD homeostasis. This foremost comparative study deciphered the genomic basis and extracellular exosomal effects of HLA transfer on T lymphocytes in the context of CeD, offering greater insight into this auto-immune disease. |
format | Online Article Text |
id | pubmed-9181181 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91811812022-06-10 Enhanced Extracellular Transfer of HLA-DQ Activates CD3(+) Lymphocytes towards Compromised Treg Induction in Celiac Disease Hudec, Michael Juříčková, Iva Riegerová, Kamila Ovsepian, Saak V. Černá, Marie O’Leary, Valerie Bríd Int J Mol Sci Article Celiac disease (CeD) manifests with autoimmune intestinal inflammation from gluten and genetic predisposition linked to human leukocyte antigen class-II (HLA-II) gene variants. Antigen-presenting cells facilitate gluten exposition through the interaction of their surface major histocompatibility complex (MHC) with the T cell receptor (TCR) on T lymphocytes. This fundamental mechanism of adaptive immunity has broadened upon recognition of extracellular exosomal MHC, raising awareness of an alternative means for antigen presentation. This study demonstrates that conditioned growth media (CGM) previously exposed to monocyte-derived dendritic cells from CeD significantly downregulates the CD3(+) lineage marker of control T cells. Such increased activation was reflected in their elevated IL-2 secretion. Exosome localization motif identification and quantification within HLA-DQA1 and HLA-DQB1 transcripts highlighted their significant prevalence within HLA-DQB1 alleles associated with CeD susceptibility. Flow cytometry revealed the strong correlation between HLA-DQ and the CD63 exosomal marker in T cells exposed to CGM from MoDCs sourced from CeD patients. This resulted in lower concentrations of CD25(+) CD127(−) T cells, suggestive of their compromised induction to T-regulatory cells associated with CeD homeostasis. This foremost comparative study deciphered the genomic basis and extracellular exosomal effects of HLA transfer on T lymphocytes in the context of CeD, offering greater insight into this auto-immune disease. MDPI 2022-05-29 /pmc/articles/PMC9181181/ /pubmed/35682780 http://dx.doi.org/10.3390/ijms23116102 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hudec, Michael Juříčková, Iva Riegerová, Kamila Ovsepian, Saak V. Černá, Marie O’Leary, Valerie Bríd Enhanced Extracellular Transfer of HLA-DQ Activates CD3(+) Lymphocytes towards Compromised Treg Induction in Celiac Disease |
title | Enhanced Extracellular Transfer of HLA-DQ Activates CD3(+) Lymphocytes towards Compromised Treg Induction in Celiac Disease |
title_full | Enhanced Extracellular Transfer of HLA-DQ Activates CD3(+) Lymphocytes towards Compromised Treg Induction in Celiac Disease |
title_fullStr | Enhanced Extracellular Transfer of HLA-DQ Activates CD3(+) Lymphocytes towards Compromised Treg Induction in Celiac Disease |
title_full_unstemmed | Enhanced Extracellular Transfer of HLA-DQ Activates CD3(+) Lymphocytes towards Compromised Treg Induction in Celiac Disease |
title_short | Enhanced Extracellular Transfer of HLA-DQ Activates CD3(+) Lymphocytes towards Compromised Treg Induction in Celiac Disease |
title_sort | enhanced extracellular transfer of hla-dq activates cd3(+) lymphocytes towards compromised treg induction in celiac disease |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181181/ https://www.ncbi.nlm.nih.gov/pubmed/35682780 http://dx.doi.org/10.3390/ijms23116102 |
work_keys_str_mv | AT hudecmichael enhancedextracellulartransferofhladqactivatescd3lymphocytestowardscompromisedtreginductioninceliacdisease AT jurickovaiva enhancedextracellulartransferofhladqactivatescd3lymphocytestowardscompromisedtreginductioninceliacdisease AT riegerovakamila enhancedextracellulartransferofhladqactivatescd3lymphocytestowardscompromisedtreginductioninceliacdisease AT ovsepiansaakv enhancedextracellulartransferofhladqactivatescd3lymphocytestowardscompromisedtreginductioninceliacdisease AT cernamarie enhancedextracellulartransferofhladqactivatescd3lymphocytestowardscompromisedtreginductioninceliacdisease AT olearyvaleriebrid enhancedextracellulartransferofhladqactivatescd3lymphocytestowardscompromisedtreginductioninceliacdisease |