Cargando…
Compressive Property of Additively-Manufactured Micro-Architectures with X-Type Lattice Unit Cell
In this paper, novel micro-architectures with X-type lattice unit cell (namely, face-centered cubic (FCC), and X-type) are constructed and prepared by additive manufacturing technology. The compression behaviors of micro-architectures are explored in detail by experimental measurement and theoretica...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181394/ https://www.ncbi.nlm.nih.gov/pubmed/35683117 http://dx.doi.org/10.3390/ma15113815 |
Sumario: | In this paper, novel micro-architectures with X-type lattice unit cell (namely, face-centered cubic (FCC), and X-type) are constructed and prepared by additive manufacturing technology. The compression behaviors of micro-architectures are explored in detail by experimental measurement and theoretical prediction. It is found that the strength of FCC micro-lattice structure is higher than that of the X-type micro-lattice structure with the same relative density. The X-type micro-lattice structure exhibits a zero Poisson’s ratio during compression deformation. In addition, the compressive strength and energy absorption efficiency of proposed micro-architectures shows a higher advantage over other previously cellular materials in a map for material selection. |
---|