Cargando…

Quality and Quantity Assessment of the Water Repellent Properties of Functional Clothing Materials after Washing

The aim of the research was to evaluate the changes in the surface properties of five functional clothing materials with water-repellent finishes (including PFC-free finish) after 1, 5, and 10 washes with three detergents. A new approach to the interpretation of the water-repellent properties of tex...

Descripción completa

Detalles Bibliográficos
Autores principales: Kowalski, Mateusz, Salerno-Kochan, Renata, Kamińska, Irena, Cieślak, Małgorzata
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181528/
https://www.ncbi.nlm.nih.gov/pubmed/35683123
http://dx.doi.org/10.3390/ma15113825
Descripción
Sumario:The aim of the research was to evaluate the changes in the surface properties of five functional clothing materials with water-repellent finishes (including PFC-free finish) after 1, 5, and 10 washes with three detergents. A new approach to the interpretation of the water-repellent properties of textile materials is presented, based on two techniques, i.e., the spray test method and contact angle measurements. The results showed that washing materials with hydrophobic finishes can cause significant changes in their properties, which are mainly dependent on the composition and structure of the material, as well as the type of hydrophobic finish. The PFC-free finish is the least resistant to washing. For all materials with PFC finishes, the water repellency depends on the fluorine content on the surface and fabric topography. It was also found that increasing washing frequency resulted in a gradual decrease in water repellency. The loss of water repellency below an acceptable level (Grade 3) occurred after the fifth washing for all materials. Significant differences in the interpretation of the results of the spray test and contact angle measurements were observed. Using these methods separately provides information on the changes in the surface properties of the tested materials; however, their parallel application allows for obtaining complementary data, which is important for the proper interpretation of results.