Cargando…

Simultaneous Quantification of Anisotropic Microcirculation and Microstructure in Peripheral Nerve

Peripheral nerve injury is a significant public health challenge, and perfusion in the nerve is a potential biomarker for assessing the injury severity and prognostic outlook. Here, we applied a novel formalism that combined intravoxel incoherent motion (IVIM) and diffusion tensor imaging (DTI) to s...

Descripción completa

Detalles Bibliográficos
Autores principales: Merchant, Samer, Yeoh, Stewart, Mahan, Mark A., Hsu, Edward W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181650/
https://www.ncbi.nlm.nih.gov/pubmed/35683424
http://dx.doi.org/10.3390/jcm11113036
Descripción
Sumario:Peripheral nerve injury is a significant public health challenge, and perfusion in the nerve is a potential biomarker for assessing the injury severity and prognostic outlook. Here, we applied a novel formalism that combined intravoxel incoherent motion (IVIM) and diffusion tensor imaging (DTI) to simultaneously characterize anisotropic microcirculation and microstructure in the rat sciatic nerve. Comparison to postmortem measurements revealed that the in vivo IVIM-DTI signal contained a fast compartment (2.32 ± 0.04 × 10(−3) mm(2)/s mean diffusivity, mean ± sem, n = 6, paired t test p < 0.01) that could be attributed to microcirculation in addition to a slower compartment that had similar mean diffusivity as the postmortem nerve (1.04 ± 0.01 vs. 0.96 ± 0.05 × 10(−3) mm(2)/s, p > 0.05). Although further investigation and technical improvement are warranted, this preliminary study demonstrates both the feasibility and potential for applying the IVIM-DTI methodology to peripheral nerves for quantifying perfusion in the presence of anisotropic tissue microstructure.