Cargando…
SpatialMap: Spatial Mapping of Unmeasured Gene Expression Profiles in Spatial Transcriptomic Data Using Generalized Linear Spatial Models
Recent advances in various single-cell RNA sequencing (scRNA-seq) technologies have enabled profiling the gene expression level with the whole transcriptome at a single-cell resolution. However, it lacks the spatial context of tissues. The image-based transcriptomics in situ studies (e.g., MERFISH a...
Autores principales: | Gao, Dalong, Ning, Jin, Liu, Gang, Sun, Shiquan, Dang, Xiaoqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181802/ https://www.ncbi.nlm.nih.gov/pubmed/35692845 http://dx.doi.org/10.3389/fgene.2022.893522 |
Ejemplares similares
-
Analysis and Visualization of Spatial Transcriptomic Data
por: Liu, Boxiang, et al.
Publicado: (2022) -
DEEPsc: A Deep Learning-Based Map Connecting Single-Cell Transcriptomics and Spatial Imaging Data
por: Maseda, Floyd, et al.
Publicado: (2021) -
Correcting Principal Component Maps for Effects of Spatial Autocorrelation in Population Genetic Data
por: Frichot, Eric, et al.
Publicado: (2012) -
Spatial Transcriptomics for Tumor Heterogeneity Analysis
por: Li, Qiongyu, et al.
Publicado: (2022) -
Spatial mapping of the total transcriptome by in situ polyadenylation
por: McKellar, David W., et al.
Publicado: (2022)