Cargando…
Algorithm for Determining Time Series of Phase Transformations in the Solid State Using Long-Short-Term Memory Neural Network
In the numerical analysis of manufacturing processes of metal parts, many material properties depending on, for example, the temperature or stress state, must be taken into account. Often these data are dependent on the temperature changes over time. Strongly non-linear material property relationshi...
Autores principales: | Wróbel, Joanna, Kulawik, Adam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181814/ https://www.ncbi.nlm.nih.gov/pubmed/35683091 http://dx.doi.org/10.3390/ma15113792 |
Ejemplares similares
-
Model of the Austenite Decomposition during Cooling of the Medium Carbon Steel Using LSTM Recurrent Neural Network
por: Kulawik, Adam, et al.
Publicado: (2021) -
Prediction of the Superficial Heat Source Parameters for TIG Heating Process Using FEM and ANN Modeling
por: Wróbel, Joanna, et al.
Publicado: (2019) -
The Problem of Selecting the Parameters of the Numerical Model of the Heating Process with a Point Heat Source and Its Experimental Verification
por: Sobiepański, Michał, et al.
Publicado: (2023) -
Solid phase transformations
por: Čermák, J, et al.
Publicado: (2008) -
Transformative neural representations support long-term episodic memory
por: Liu, Jing, et al.
Publicado: (2021)