Cargando…

High Anti-Reflection Large-Scale Cup-Shaped Nano-Pillar Arrays via Thin Film Anodic Aluminum Oxide Replication

Surface anti-reflection (AR) with nanometer-scaled texture has shown excellent light trapping performance involving optical devices. In this work, we developed a simple and lithography-free structure replication process to obtain large scale surface cup-shaped nano-pillar (CSNP) arrays for the first...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Tangyou, Shui, Furong, Yang, Xiancui, Zhou, Zhiping, Wan, Rongqiao, Liu, Yun, Qian, Cheng, Xu, Zhimou, Li, Haiou, Guo, Wenjing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181906/
https://www.ncbi.nlm.nih.gov/pubmed/35683731
http://dx.doi.org/10.3390/nano12111875
Descripción
Sumario:Surface anti-reflection (AR) with nanometer-scaled texture has shown excellent light trapping performance involving optical devices. In this work, we developed a simple and lithography-free structure replication process to obtain large scale surface cup-shaped nano-pillar (CSNP) arrays for the first time. A method of depositing was used for pattern transfer based on PMMA pre-coated through-hole anodic aluminum oxide (AAO) thin film (~500 nm), and eventually, the uniformity of the transferred nanostructures was guaranteed. From the spectrum (250 nm~2000 nm) dependent measurements, the CSNP nanostructured Si showed excellent AR performance when compared with that of the single-polished Si. Moreover, the CSNP was found to be polarization insensitive and less dependent on incidence angles (≤80°) over the whole spectrum. To further prove the excellent antireflective properties of the CSNP structure, thin film solar cell models were built and studied. The maximum value of J(ph) for CSNP solar cells shows obvious improvement comparing with that of the cylinder, cone and parabola structured ones. Specifically, in comparison with the optimized Si(3)N(4) thin film solar cell, an increment of 54.64% has been achieved for the CSNP thin film solar cell.