Cargando…
Compressive and Thermal Properties of Non-Structural Lightweight Concrete Containing Industrial Byproduct Aggregates
This study aimed to investigate the recycling opportunities for industrial byproducts and their contribution to innovative concrete manufacturing processes. The attention was mainly focused on municipal solid waste incineration fly ash (MSWI-FA) and its employment, after a washing pre-treatment, as...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181976/ https://www.ncbi.nlm.nih.gov/pubmed/35683327 http://dx.doi.org/10.3390/ma15114029 |
_version_ | 1784723920238149632 |
---|---|
author | Farina, Ilenia Moccia, Ivan Salzano, Cinzia Singh, Narinder Sadrolodabaee, Payam Colangelo, Francesco |
author_facet | Farina, Ilenia Moccia, Ivan Salzano, Cinzia Singh, Narinder Sadrolodabaee, Payam Colangelo, Francesco |
author_sort | Farina, Ilenia |
collection | PubMed |
description | This study aimed to investigate the recycling opportunities for industrial byproducts and their contribution to innovative concrete manufacturing processes. The attention was mainly focused on municipal solid waste incineration fly ash (MSWI-FA) and its employment, after a washing pre-treatment, as the main component in artificially manufactured aggregates containing cement and ground granulated blast furnace slag (GGBFS) in different percentages. The produced aggregates were used to produce lightweight concrete (LWC) containing both artificial aggregates only and artificial aggregates mixed with a relatively small percentage of recycled polyethylene terephthalate (PET) in the sand form. Thereby, the possibility of producing concrete with good mechanical properties and enhanced thermal properties was investigated through effective PET reuse with beneficial impacts on the thermal insulation of structures. Based on the obtained results, the samples containing artificial aggregates had lower compressive strength (up to 30%) but better thermal performance (up to 25%) with respect to the reference sample made from natural aggregates. Moreover, substituting 10% of recycled aggregates with PET led to a greater reduction in resistance while improving the thermal conductivity. This type of concrete could improve the economic and environmental aspects by incorporating industrial wastes—mainly fly ash—thereby lowering the use of cement, which would lead to a reduction in CO(2) emissions. |
format | Online Article Text |
id | pubmed-9181976 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91819762022-06-10 Compressive and Thermal Properties of Non-Structural Lightweight Concrete Containing Industrial Byproduct Aggregates Farina, Ilenia Moccia, Ivan Salzano, Cinzia Singh, Narinder Sadrolodabaee, Payam Colangelo, Francesco Materials (Basel) Article This study aimed to investigate the recycling opportunities for industrial byproducts and their contribution to innovative concrete manufacturing processes. The attention was mainly focused on municipal solid waste incineration fly ash (MSWI-FA) and its employment, after a washing pre-treatment, as the main component in artificially manufactured aggregates containing cement and ground granulated blast furnace slag (GGBFS) in different percentages. The produced aggregates were used to produce lightweight concrete (LWC) containing both artificial aggregates only and artificial aggregates mixed with a relatively small percentage of recycled polyethylene terephthalate (PET) in the sand form. Thereby, the possibility of producing concrete with good mechanical properties and enhanced thermal properties was investigated through effective PET reuse with beneficial impacts on the thermal insulation of structures. Based on the obtained results, the samples containing artificial aggregates had lower compressive strength (up to 30%) but better thermal performance (up to 25%) with respect to the reference sample made from natural aggregates. Moreover, substituting 10% of recycled aggregates with PET led to a greater reduction in resistance while improving the thermal conductivity. This type of concrete could improve the economic and environmental aspects by incorporating industrial wastes—mainly fly ash—thereby lowering the use of cement, which would lead to a reduction in CO(2) emissions. MDPI 2022-06-06 /pmc/articles/PMC9181976/ /pubmed/35683327 http://dx.doi.org/10.3390/ma15114029 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Farina, Ilenia Moccia, Ivan Salzano, Cinzia Singh, Narinder Sadrolodabaee, Payam Colangelo, Francesco Compressive and Thermal Properties of Non-Structural Lightweight Concrete Containing Industrial Byproduct Aggregates |
title | Compressive and Thermal Properties of Non-Structural Lightweight Concrete Containing Industrial Byproduct Aggregates |
title_full | Compressive and Thermal Properties of Non-Structural Lightweight Concrete Containing Industrial Byproduct Aggregates |
title_fullStr | Compressive and Thermal Properties of Non-Structural Lightweight Concrete Containing Industrial Byproduct Aggregates |
title_full_unstemmed | Compressive and Thermal Properties of Non-Structural Lightweight Concrete Containing Industrial Byproduct Aggregates |
title_short | Compressive and Thermal Properties of Non-Structural Lightweight Concrete Containing Industrial Byproduct Aggregates |
title_sort | compressive and thermal properties of non-structural lightweight concrete containing industrial byproduct aggregates |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181976/ https://www.ncbi.nlm.nih.gov/pubmed/35683327 http://dx.doi.org/10.3390/ma15114029 |
work_keys_str_mv | AT farinailenia compressiveandthermalpropertiesofnonstructurallightweightconcretecontainingindustrialbyproductaggregates AT mocciaivan compressiveandthermalpropertiesofnonstructurallightweightconcretecontainingindustrialbyproductaggregates AT salzanocinzia compressiveandthermalpropertiesofnonstructurallightweightconcretecontainingindustrialbyproductaggregates AT singhnarinder compressiveandthermalpropertiesofnonstructurallightweightconcretecontainingindustrialbyproductaggregates AT sadrolodabaeepayam compressiveandthermalpropertiesofnonstructurallightweightconcretecontainingindustrialbyproductaggregates AT colangelofrancesco compressiveandthermalpropertiesofnonstructurallightweightconcretecontainingindustrialbyproductaggregates |