Cargando…
Fabric-Reinforced Cementitious Matrix (FRCM) Carbon Yarns with Different Surface Treatments Embedded in a Cementitious Mortar: Mechanical and Durability Studies
Nowadays, FRCM systems are increasingly used for the strengthening and retrofitting of existing masonry and reinforced concrete structures. Their effectiveness strongly depends on the bond that develops at the interface between multifilament yarns, which constitute the reinforcing fabric, and the in...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181979/ https://www.ncbi.nlm.nih.gov/pubmed/35683223 http://dx.doi.org/10.3390/ma15113927 |
_version_ | 1784723921026678784 |
---|---|
author | Bompadre, Francesca Donnini, Jacopo |
author_facet | Bompadre, Francesca Donnini, Jacopo |
author_sort | Bompadre, Francesca |
collection | PubMed |
description | Nowadays, FRCM systems are increasingly used for the strengthening and retrofitting of existing masonry and reinforced concrete structures. Their effectiveness strongly depends on the bond that develops at the interface between multifilament yarns, which constitute the reinforcing fabric, and the inorganic matrix. It is well known that fabric yarns, especially when constituted by dry carbon fibers, have poor chemical-physical compatibility with inorganic matrices. For this reason, many efforts are being concentrated on trying to improve the interface compatibility by using different surface treatments on multifilament yarns. In this paper, three different surface treatments have been considered. The first two involve yarn pre-impregnation with flexible epoxy resin or nano-silica coating, while the third one involves a fiber oxidation process. Uniaxial tensile tests were carried out on single carbon yarns to evaluate tensile strength, elastic modulus and ultimate strain before and after surface treatments, and also after yarn exposure to accelerated artificial aging conditions (1000 h in saline or alkaline solutions at 40 °C), to evaluate their long-term behavior in aggressive environments. Pull-out tests on single carbon yarns embedded in a cementitious mortar were also carried out, under normal environmental conditions and after artificial exposure. Epoxy proved to be the most effective treatment, by increasing the yarn tensile strength of 34% and the pull-out load of 138%, followed by nano-silica (+9%; +40%). All surface treatments were shown to remain effective even after artificial environmental exposures, with a maximum reduction of yarn tensile strength of about 13%. |
format | Online Article Text |
id | pubmed-9181979 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91819792022-06-10 Fabric-Reinforced Cementitious Matrix (FRCM) Carbon Yarns with Different Surface Treatments Embedded in a Cementitious Mortar: Mechanical and Durability Studies Bompadre, Francesca Donnini, Jacopo Materials (Basel) Article Nowadays, FRCM systems are increasingly used for the strengthening and retrofitting of existing masonry and reinforced concrete structures. Their effectiveness strongly depends on the bond that develops at the interface between multifilament yarns, which constitute the reinforcing fabric, and the inorganic matrix. It is well known that fabric yarns, especially when constituted by dry carbon fibers, have poor chemical-physical compatibility with inorganic matrices. For this reason, many efforts are being concentrated on trying to improve the interface compatibility by using different surface treatments on multifilament yarns. In this paper, three different surface treatments have been considered. The first two involve yarn pre-impregnation with flexible epoxy resin or nano-silica coating, while the third one involves a fiber oxidation process. Uniaxial tensile tests were carried out on single carbon yarns to evaluate tensile strength, elastic modulus and ultimate strain before and after surface treatments, and also after yarn exposure to accelerated artificial aging conditions (1000 h in saline or alkaline solutions at 40 °C), to evaluate their long-term behavior in aggressive environments. Pull-out tests on single carbon yarns embedded in a cementitious mortar were also carried out, under normal environmental conditions and after artificial exposure. Epoxy proved to be the most effective treatment, by increasing the yarn tensile strength of 34% and the pull-out load of 138%, followed by nano-silica (+9%; +40%). All surface treatments were shown to remain effective even after artificial environmental exposures, with a maximum reduction of yarn tensile strength of about 13%. MDPI 2022-05-31 /pmc/articles/PMC9181979/ /pubmed/35683223 http://dx.doi.org/10.3390/ma15113927 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bompadre, Francesca Donnini, Jacopo Fabric-Reinforced Cementitious Matrix (FRCM) Carbon Yarns with Different Surface Treatments Embedded in a Cementitious Mortar: Mechanical and Durability Studies |
title | Fabric-Reinforced Cementitious Matrix (FRCM) Carbon Yarns with Different Surface Treatments Embedded in a Cementitious Mortar: Mechanical and Durability Studies |
title_full | Fabric-Reinforced Cementitious Matrix (FRCM) Carbon Yarns with Different Surface Treatments Embedded in a Cementitious Mortar: Mechanical and Durability Studies |
title_fullStr | Fabric-Reinforced Cementitious Matrix (FRCM) Carbon Yarns with Different Surface Treatments Embedded in a Cementitious Mortar: Mechanical and Durability Studies |
title_full_unstemmed | Fabric-Reinforced Cementitious Matrix (FRCM) Carbon Yarns with Different Surface Treatments Embedded in a Cementitious Mortar: Mechanical and Durability Studies |
title_short | Fabric-Reinforced Cementitious Matrix (FRCM) Carbon Yarns with Different Surface Treatments Embedded in a Cementitious Mortar: Mechanical and Durability Studies |
title_sort | fabric-reinforced cementitious matrix (frcm) carbon yarns with different surface treatments embedded in a cementitious mortar: mechanical and durability studies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181979/ https://www.ncbi.nlm.nih.gov/pubmed/35683223 http://dx.doi.org/10.3390/ma15113927 |
work_keys_str_mv | AT bompadrefrancesca fabricreinforcedcementitiousmatrixfrcmcarbonyarnswithdifferentsurfacetreatmentsembeddedinacementitiousmortarmechanicalanddurabilitystudies AT donninijacopo fabricreinforcedcementitiousmatrixfrcmcarbonyarnswithdifferentsurfacetreatmentsembeddedinacementitiousmortarmechanicalanddurabilitystudies |