Cargando…

Assembly and Photocatalytic Degradation Activity of Spherical ZnO/CdSe Heterostructures on Flexible Carbon Cloth Substrates

With the increasing water pollution, traditional treatments cannot sufficiently remove pollutants, thereby prompting the development of photocatalysts. In this study, ZnO–carbon cloth (CC) and spherical ZnO/CdSe–CC heterostructures with different CdSe loadings were synthesized using an ultrasonic-hy...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xuan, Li, Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182205/
https://www.ncbi.nlm.nih.gov/pubmed/35683753
http://dx.doi.org/10.3390/nano12111898
Descripción
Sumario:With the increasing water pollution, traditional treatments cannot sufficiently remove pollutants, thereby prompting the development of photocatalysts. In this study, ZnO–carbon cloth (CC) and spherical ZnO/CdSe–CC heterostructures with different CdSe loadings were synthesized using an ultrasonic-hydrothermal method on flexible CC. Z20CdSe–CC (ZnO with 20 mg CdSe loaded on CC) exhibited the best visible-light-responsive photocatalytic performance, with approximately 83.5% methylene blue reduced in 180 min. In addition, the degradation efficiency of Z20CdSe–CC was maintained at 70.9% after three cycles in relation to that of the ZnO powder. The synergistic effect of CdSe and CC not only effectively widened the light absorption range of ZnO/CdSe–CC but also further promoted the effective transfer of carriers and realized an efficient photocatalytic degradation process. Therefore, the ZnO/CdSe–CC photocatalytic material with CC as the flexible substrate exhibited high photocatalytic activity and stability in environmental remediation. This provides a design idea for the development of an efficient and flexible photocatalytic material in line with the concept of green chemistry.