Cargando…

A Drug–Drug Multicomponent Crystal of Metformin and Dobesilate: Crystal Structure Analysis and Hygroscopicity Property

A drug–drug multicomponent crystal consisting of metformin (MET) and dobesilate (DBS) was prospectively connected by solvent cooling and evaporating co-crystallization using the multicomponent crystal strategy, not only to optimize the physicochemical properties of single drugs, but also to play a r...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Lan, Hu, Xiangnan, Cai, Linhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182214/
https://www.ncbi.nlm.nih.gov/pubmed/35684409
http://dx.doi.org/10.3390/molecules27113472
Descripción
Sumario:A drug–drug multicomponent crystal consisting of metformin (MET) and dobesilate (DBS) was prospectively connected by solvent cooling and evaporating co-crystallization using the multicomponent crystal strategy, not only to optimize the physicochemical properties of single drugs, but also to play a role in the cooperative effect of DBS with the potential vascular protective effects of MET against diabetic retinopathy (DR). The crystal structure analysis demonstrated that MET and DBS were coupled in a 3D supramolecular structure connected by hydrogen-bonding interactions with a molar ratio of 1:1. Almost all hydrogen bond donors and receptors of MET and DBS participated in the bonding, which hindered the combination of remaining potential hydrogen bond sites and water molecules, resulting in a lower hygroscopicity property than MET alone.