Cargando…

Design for Additive Manufacturing and Investigation of Surface-Based Lattice Structures for Buckling Properties Using Experimental and Finite Element Methods

Additive Manufacturing (AM) is rapidly evolving due to its unlimited design freedom to fabricate complex and intricate light-weight geometries with the use of lattice structure that have potential applications including construction, aerospace and biomedical applications, where mechanical properties...

Descripción completa

Detalles Bibliográficos
Autores principales: Shah, Gul Jamil, Nazir, Aamer, Lin, Shang-Chih, Jeng, Jeng-Ywan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182221/
https://www.ncbi.nlm.nih.gov/pubmed/35683330
http://dx.doi.org/10.3390/ma15114037
_version_ 1784723981513785344
author Shah, Gul Jamil
Nazir, Aamer
Lin, Shang-Chih
Jeng, Jeng-Ywan
author_facet Shah, Gul Jamil
Nazir, Aamer
Lin, Shang-Chih
Jeng, Jeng-Ywan
author_sort Shah, Gul Jamil
collection PubMed
description Additive Manufacturing (AM) is rapidly evolving due to its unlimited design freedom to fabricate complex and intricate light-weight geometries with the use of lattice structure that have potential applications including construction, aerospace and biomedical applications, where mechanical properties are the prime focus. Buckling instability in lattice structures is one of the main failure mechanisms that can lead to major failure in structural applications that are subjected to compressive loads, but it has yet to be fully explored. This study aims to investigate the effect of surface-based lattice structure topologies and structured column height on the critical buckling load of lattice structured columns. Four different triply periodic minimal surface (TPMS) lattice topologies were selected and three design configurations (unit cells in x, y, z axis), i.e., 2 × 2 × 4, 2 × 2 × 8 and 2 × 2 × 16 column, for each structure were designed followed by printing using HP MultiJet fusion. Uni-axial compression testing was performed to study the variation in critical buckling load due to change in unit cell topology and column height. The results revealed that the structured column possessing Diamond structures shows the highest critical buckling load followed by Neovius and Gyroid structures, whereas the Schwarz-P unit cell showed least resistance to buckling among the unit cells analyzed in this study. In addition to that, the Diamond design showed a uniform decrease in critical buckling load with a column height maximum of 5193 N, which makes it better for applications in which the column’s height is relatively higher while the Schwarz-P design showed advantages for low height column maximum of 2271 N. Overall, the variations of unit cell morphologies greatly affect the critical buckling load and permits the researchers to select different lattice structures for various applications as per load/stiffness requirement with different height and dimensions. Experimental results were validated by finite element analysis (FEA), which showed same patterns of buckling while the numerical values of critical buckling load show the variation to be up to 10%.
format Online
Article
Text
id pubmed-9182221
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91822212022-06-10 Design for Additive Manufacturing and Investigation of Surface-Based Lattice Structures for Buckling Properties Using Experimental and Finite Element Methods Shah, Gul Jamil Nazir, Aamer Lin, Shang-Chih Jeng, Jeng-Ywan Materials (Basel) Article Additive Manufacturing (AM) is rapidly evolving due to its unlimited design freedom to fabricate complex and intricate light-weight geometries with the use of lattice structure that have potential applications including construction, aerospace and biomedical applications, where mechanical properties are the prime focus. Buckling instability in lattice structures is one of the main failure mechanisms that can lead to major failure in structural applications that are subjected to compressive loads, but it has yet to be fully explored. This study aims to investigate the effect of surface-based lattice structure topologies and structured column height on the critical buckling load of lattice structured columns. Four different triply periodic minimal surface (TPMS) lattice topologies were selected and three design configurations (unit cells in x, y, z axis), i.e., 2 × 2 × 4, 2 × 2 × 8 and 2 × 2 × 16 column, for each structure were designed followed by printing using HP MultiJet fusion. Uni-axial compression testing was performed to study the variation in critical buckling load due to change in unit cell topology and column height. The results revealed that the structured column possessing Diamond structures shows the highest critical buckling load followed by Neovius and Gyroid structures, whereas the Schwarz-P unit cell showed least resistance to buckling among the unit cells analyzed in this study. In addition to that, the Diamond design showed a uniform decrease in critical buckling load with a column height maximum of 5193 N, which makes it better for applications in which the column’s height is relatively higher while the Schwarz-P design showed advantages for low height column maximum of 2271 N. Overall, the variations of unit cell morphologies greatly affect the critical buckling load and permits the researchers to select different lattice structures for various applications as per load/stiffness requirement with different height and dimensions. Experimental results were validated by finite element analysis (FEA), which showed same patterns of buckling while the numerical values of critical buckling load show the variation to be up to 10%. MDPI 2022-06-06 /pmc/articles/PMC9182221/ /pubmed/35683330 http://dx.doi.org/10.3390/ma15114037 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Shah, Gul Jamil
Nazir, Aamer
Lin, Shang-Chih
Jeng, Jeng-Ywan
Design for Additive Manufacturing and Investigation of Surface-Based Lattice Structures for Buckling Properties Using Experimental and Finite Element Methods
title Design for Additive Manufacturing and Investigation of Surface-Based Lattice Structures for Buckling Properties Using Experimental and Finite Element Methods
title_full Design for Additive Manufacturing and Investigation of Surface-Based Lattice Structures for Buckling Properties Using Experimental and Finite Element Methods
title_fullStr Design for Additive Manufacturing and Investigation of Surface-Based Lattice Structures for Buckling Properties Using Experimental and Finite Element Methods
title_full_unstemmed Design for Additive Manufacturing and Investigation of Surface-Based Lattice Structures for Buckling Properties Using Experimental and Finite Element Methods
title_short Design for Additive Manufacturing and Investigation of Surface-Based Lattice Structures for Buckling Properties Using Experimental and Finite Element Methods
title_sort design for additive manufacturing and investigation of surface-based lattice structures for buckling properties using experimental and finite element methods
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182221/
https://www.ncbi.nlm.nih.gov/pubmed/35683330
http://dx.doi.org/10.3390/ma15114037
work_keys_str_mv AT shahguljamil designforadditivemanufacturingandinvestigationofsurfacebasedlatticestructuresforbucklingpropertiesusingexperimentalandfiniteelementmethods
AT naziraamer designforadditivemanufacturingandinvestigationofsurfacebasedlatticestructuresforbucklingpropertiesusingexperimentalandfiniteelementmethods
AT linshangchih designforadditivemanufacturingandinvestigationofsurfacebasedlatticestructuresforbucklingpropertiesusingexperimentalandfiniteelementmethods
AT jengjengywan designforadditivemanufacturingandinvestigationofsurfacebasedlatticestructuresforbucklingpropertiesusingexperimentalandfiniteelementmethods