Cargando…
Compressive Strength Prediction of Rubber Concrete Based on Artificial Neural Network Model with Hybrid Particle Swarm Optimization Algorithm
Conventional neural networks tend to fall into local extremum on large datasets, while the research on the strength of rubber concrete using intelligent algorithms to optimize artificial neural networks is limited. Therefore, to improve the prediction accuracy of rubber concrete strength, an artific...
Autores principales: | Huang, Xiao-Yu, Wu, Ke-Yang, Wang, Shuai, Lu, Tong, Lu, Ying-Fa, Deng, Wei-Chao, Li, Hou-Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182238/ https://www.ncbi.nlm.nih.gov/pubmed/35683231 http://dx.doi.org/10.3390/ma15113934 |
Ejemplares similares
-
Modelling the Influence of Waste Rubber on Compressive Strength of Concrete by Artificial Neural Networks
por: Hadzima-Nyarko, Marijana, et al.
Publicado: (2019) -
Learned Prediction of Compressive Strength of GGBFS Concrete Using Hybrid Artificial Neural Network Models
por: Han, In-Ji, et al.
Publicado: (2019) -
Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network
por: Bu, Liangtao, et al.
Publicado: (2021) -
Modeling of Compressive Strength of Self-Compacting Rubberized Concrete Using Machine Learning
por: Kovačević, Miljan, et al.
Publicado: (2021) -
Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms
por: Garro, Beatriz A., et al.
Publicado: (2015)