Cargando…

Development and Validation of an HPLC-UV Method for the Quantification of 4′-Hydroxydiclofenac Using Salicylic Acid: Future Applications for Measurement of In Vitro Drug–Drug Interaction in Rat Liver Microsomes

Salicylic acid is a key compound in nonsteroidal anti-inflammatory drugs that has been recently used for preventing the risk of hospitalization and death among COVID-19 patients and in preventing colorectal cancer (CRC) by suppressing two key proteins. Understanding drug–drug interaction pathways pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Salhab, Hassan, Barker, James
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182407/
https://www.ncbi.nlm.nih.gov/pubmed/35684519
http://dx.doi.org/10.3390/molecules27113587
_version_ 1784724028188000256
author Salhab, Hassan
Barker, James
author_facet Salhab, Hassan
Barker, James
author_sort Salhab, Hassan
collection PubMed
description Salicylic acid is a key compound in nonsteroidal anti-inflammatory drugs that has been recently used for preventing the risk of hospitalization and death among COVID-19 patients and in preventing colorectal cancer (CRC) by suppressing two key proteins. Understanding drug–drug interaction pathways prevent the occurrence of adverse drug reactions in clinical trials. Drug–drug interactions can result in the variation of the pharmacodynamics and pharmacokinetic of the drug. Inhibition of the Cytochrome P450 enzyme activity leads to the withdrawal of the drug from the market. The aim of this paper was to develop and validate an HPLC-UV method for the quantification of 4′-hydroxydiclofenac as a CYP2C9 metabolite using salicylic acid as an inhibitor in rat liver microsomes. A CYP2C9 assay was developed and validated on the reversed phase C(18) column (SUPELCO 25 cm × 4.6 mm × 5 µm) using a low-pressure gradient elution programming at T = 30 °C, a wavelength of 282 nm, and a flow rate of 1 mL/min. 4′-hydroxydiclofenac demonstrated a good linearity (R(2) > 0.99), good reproducibility, low detection, and quantitation limit, and the inter and intra-day precision met the ICH guidelines (<15%). 4′-hydroxydiclofenac was stable for three days and showed an acceptable accuracy and recovery (80–120%) within the ICH guidelines in a rat liver microsome sample. This method will be beneficial for future applications of the in vitro inhibitory effect of salicylic acid on the CYP2C9 enzyme activity in rat microsomes and the in vivo administration of salicylic acid in clinical trials.
format Online
Article
Text
id pubmed-9182407
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91824072022-06-10 Development and Validation of an HPLC-UV Method for the Quantification of 4′-Hydroxydiclofenac Using Salicylic Acid: Future Applications for Measurement of In Vitro Drug–Drug Interaction in Rat Liver Microsomes Salhab, Hassan Barker, James Molecules Article Salicylic acid is a key compound in nonsteroidal anti-inflammatory drugs that has been recently used for preventing the risk of hospitalization and death among COVID-19 patients and in preventing colorectal cancer (CRC) by suppressing two key proteins. Understanding drug–drug interaction pathways prevent the occurrence of adverse drug reactions in clinical trials. Drug–drug interactions can result in the variation of the pharmacodynamics and pharmacokinetic of the drug. Inhibition of the Cytochrome P450 enzyme activity leads to the withdrawal of the drug from the market. The aim of this paper was to develop and validate an HPLC-UV method for the quantification of 4′-hydroxydiclofenac as a CYP2C9 metabolite using salicylic acid as an inhibitor in rat liver microsomes. A CYP2C9 assay was developed and validated on the reversed phase C(18) column (SUPELCO 25 cm × 4.6 mm × 5 µm) using a low-pressure gradient elution programming at T = 30 °C, a wavelength of 282 nm, and a flow rate of 1 mL/min. 4′-hydroxydiclofenac demonstrated a good linearity (R(2) > 0.99), good reproducibility, low detection, and quantitation limit, and the inter and intra-day precision met the ICH guidelines (<15%). 4′-hydroxydiclofenac was stable for three days and showed an acceptable accuracy and recovery (80–120%) within the ICH guidelines in a rat liver microsome sample. This method will be beneficial for future applications of the in vitro inhibitory effect of salicylic acid on the CYP2C9 enzyme activity in rat microsomes and the in vivo administration of salicylic acid in clinical trials. MDPI 2022-06-02 /pmc/articles/PMC9182407/ /pubmed/35684519 http://dx.doi.org/10.3390/molecules27113587 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Salhab, Hassan
Barker, James
Development and Validation of an HPLC-UV Method for the Quantification of 4′-Hydroxydiclofenac Using Salicylic Acid: Future Applications for Measurement of In Vitro Drug–Drug Interaction in Rat Liver Microsomes
title Development and Validation of an HPLC-UV Method for the Quantification of 4′-Hydroxydiclofenac Using Salicylic Acid: Future Applications for Measurement of In Vitro Drug–Drug Interaction in Rat Liver Microsomes
title_full Development and Validation of an HPLC-UV Method for the Quantification of 4′-Hydroxydiclofenac Using Salicylic Acid: Future Applications for Measurement of In Vitro Drug–Drug Interaction in Rat Liver Microsomes
title_fullStr Development and Validation of an HPLC-UV Method for the Quantification of 4′-Hydroxydiclofenac Using Salicylic Acid: Future Applications for Measurement of In Vitro Drug–Drug Interaction in Rat Liver Microsomes
title_full_unstemmed Development and Validation of an HPLC-UV Method for the Quantification of 4′-Hydroxydiclofenac Using Salicylic Acid: Future Applications for Measurement of In Vitro Drug–Drug Interaction in Rat Liver Microsomes
title_short Development and Validation of an HPLC-UV Method for the Quantification of 4′-Hydroxydiclofenac Using Salicylic Acid: Future Applications for Measurement of In Vitro Drug–Drug Interaction in Rat Liver Microsomes
title_sort development and validation of an hplc-uv method for the quantification of 4′-hydroxydiclofenac using salicylic acid: future applications for measurement of in vitro drug–drug interaction in rat liver microsomes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182407/
https://www.ncbi.nlm.nih.gov/pubmed/35684519
http://dx.doi.org/10.3390/molecules27113587
work_keys_str_mv AT salhabhassan developmentandvalidationofanhplcuvmethodforthequantificationof4hydroxydiclofenacusingsalicylicacidfutureapplicationsformeasurementofinvitrodrugdruginteractioninratlivermicrosomes
AT barkerjames developmentandvalidationofanhplcuvmethodforthequantificationof4hydroxydiclofenacusingsalicylicacidfutureapplicationsformeasurementofinvitrodrugdruginteractioninratlivermicrosomes