Cargando…

Electric Energy Storage Effect in Hydrated ZrO(2)-Nanostructured System

The dimensional effect of electric charge storage with a density of up to 270 μF/g by the hydrated ZrO(2)-nanoparticles system was determined. It was found that the place of localization of different charge carriers is the generalized heterophase boundary-nanoparticles surface. The supposed mechanis...

Descripción completa

Detalles Bibliográficos
Autores principales: Doroshkevich, Alexander S., Lyubchyk, Andriy I., Oksengendler, Boris L., Zelenyak, Tatyana Yu., Appazov, Nurbol O., Kirillov, Andriy K., Vasilenko, Tatyana A., Tatarinova, Alisa A., Gorban, Oksana O., Bodnarchuk, Viktor I., Nikiforova, Nadejda N., Balasoiu, Maria, Mardare, Diana M., Mita, Carmen, Luca, Dorin, Mirzayev, Matlab N., Nabiyev, Asif A., Popov, Evgeni P., Stanculescu, Anca, Konstantinova, Tatyana E., Aleksiayenak, Yulia V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182434/
https://www.ncbi.nlm.nih.gov/pubmed/35683639
http://dx.doi.org/10.3390/nano12111783
_version_ 1784724034768863232
author Doroshkevich, Alexander S.
Lyubchyk, Andriy I.
Oksengendler, Boris L.
Zelenyak, Tatyana Yu.
Appazov, Nurbol O.
Kirillov, Andriy K.
Vasilenko, Tatyana A.
Tatarinova, Alisa A.
Gorban, Oksana O.
Bodnarchuk, Viktor I.
Nikiforova, Nadejda N.
Balasoiu, Maria
Mardare, Diana M.
Mita, Carmen
Luca, Dorin
Mirzayev, Matlab N.
Nabiyev, Asif A.
Popov, Evgeni P.
Stanculescu, Anca
Konstantinova, Tatyana E.
Aleksiayenak, Yulia V.
author_facet Doroshkevich, Alexander S.
Lyubchyk, Andriy I.
Oksengendler, Boris L.
Zelenyak, Tatyana Yu.
Appazov, Nurbol O.
Kirillov, Andriy K.
Vasilenko, Tatyana A.
Tatarinova, Alisa A.
Gorban, Oksana O.
Bodnarchuk, Viktor I.
Nikiforova, Nadejda N.
Balasoiu, Maria
Mardare, Diana M.
Mita, Carmen
Luca, Dorin
Mirzayev, Matlab N.
Nabiyev, Asif A.
Popov, Evgeni P.
Stanculescu, Anca
Konstantinova, Tatyana E.
Aleksiayenak, Yulia V.
author_sort Doroshkevich, Alexander S.
collection PubMed
description The dimensional effect of electric charge storage with a density of up to 270 μF/g by the hydrated ZrO(2)-nanoparticles system was determined. It was found that the place of localization of different charge carriers is the generalized heterophase boundary-nanoparticles surface. The supposed mechanism of the effect was investigated using the theory of dispersed systems, the band theory, and the theory of contact phenomena in semiconductors, which consists of the formation of localized electronic states in the nanoparticle material due to donor–acceptor interaction with the adsorption ionic atmosphere. The effect is relevant for modern nanoelectronics, microsystem technology, and printed electronics because it allows overcoming the basic physical restrictions on the size, temperature, and operation frequency of the device, caused by leakage currents.
format Online
Article
Text
id pubmed-9182434
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91824342022-06-10 Electric Energy Storage Effect in Hydrated ZrO(2)-Nanostructured System Doroshkevich, Alexander S. Lyubchyk, Andriy I. Oksengendler, Boris L. Zelenyak, Tatyana Yu. Appazov, Nurbol O. Kirillov, Andriy K. Vasilenko, Tatyana A. Tatarinova, Alisa A. Gorban, Oksana O. Bodnarchuk, Viktor I. Nikiforova, Nadejda N. Balasoiu, Maria Mardare, Diana M. Mita, Carmen Luca, Dorin Mirzayev, Matlab N. Nabiyev, Asif A. Popov, Evgeni P. Stanculescu, Anca Konstantinova, Tatyana E. Aleksiayenak, Yulia V. Nanomaterials (Basel) Article The dimensional effect of electric charge storage with a density of up to 270 μF/g by the hydrated ZrO(2)-nanoparticles system was determined. It was found that the place of localization of different charge carriers is the generalized heterophase boundary-nanoparticles surface. The supposed mechanism of the effect was investigated using the theory of dispersed systems, the band theory, and the theory of contact phenomena in semiconductors, which consists of the formation of localized electronic states in the nanoparticle material due to donor–acceptor interaction with the adsorption ionic atmosphere. The effect is relevant for modern nanoelectronics, microsystem technology, and printed electronics because it allows overcoming the basic physical restrictions on the size, temperature, and operation frequency of the device, caused by leakage currents. MDPI 2022-05-24 /pmc/articles/PMC9182434/ /pubmed/35683639 http://dx.doi.org/10.3390/nano12111783 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Doroshkevich, Alexander S.
Lyubchyk, Andriy I.
Oksengendler, Boris L.
Zelenyak, Tatyana Yu.
Appazov, Nurbol O.
Kirillov, Andriy K.
Vasilenko, Tatyana A.
Tatarinova, Alisa A.
Gorban, Oksana O.
Bodnarchuk, Viktor I.
Nikiforova, Nadejda N.
Balasoiu, Maria
Mardare, Diana M.
Mita, Carmen
Luca, Dorin
Mirzayev, Matlab N.
Nabiyev, Asif A.
Popov, Evgeni P.
Stanculescu, Anca
Konstantinova, Tatyana E.
Aleksiayenak, Yulia V.
Electric Energy Storage Effect in Hydrated ZrO(2)-Nanostructured System
title Electric Energy Storage Effect in Hydrated ZrO(2)-Nanostructured System
title_full Electric Energy Storage Effect in Hydrated ZrO(2)-Nanostructured System
title_fullStr Electric Energy Storage Effect in Hydrated ZrO(2)-Nanostructured System
title_full_unstemmed Electric Energy Storage Effect in Hydrated ZrO(2)-Nanostructured System
title_short Electric Energy Storage Effect in Hydrated ZrO(2)-Nanostructured System
title_sort electric energy storage effect in hydrated zro(2)-nanostructured system
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182434/
https://www.ncbi.nlm.nih.gov/pubmed/35683639
http://dx.doi.org/10.3390/nano12111783
work_keys_str_mv AT doroshkevichalexanders electricenergystorageeffectinhydratedzro2nanostructuredsystem
AT lyubchykandriyi electricenergystorageeffectinhydratedzro2nanostructuredsystem
AT oksengendlerborisl electricenergystorageeffectinhydratedzro2nanostructuredsystem
AT zelenyaktatyanayu electricenergystorageeffectinhydratedzro2nanostructuredsystem
AT appazovnurbolo electricenergystorageeffectinhydratedzro2nanostructuredsystem
AT kirillovandriyk electricenergystorageeffectinhydratedzro2nanostructuredsystem
AT vasilenkotatyanaa electricenergystorageeffectinhydratedzro2nanostructuredsystem
AT tatarinovaalisaa electricenergystorageeffectinhydratedzro2nanostructuredsystem
AT gorbanoksanao electricenergystorageeffectinhydratedzro2nanostructuredsystem
AT bodnarchukviktori electricenergystorageeffectinhydratedzro2nanostructuredsystem
AT nikiforovanadejdan electricenergystorageeffectinhydratedzro2nanostructuredsystem
AT balasoiumaria electricenergystorageeffectinhydratedzro2nanostructuredsystem
AT mardaredianam electricenergystorageeffectinhydratedzro2nanostructuredsystem
AT mitacarmen electricenergystorageeffectinhydratedzro2nanostructuredsystem
AT lucadorin electricenergystorageeffectinhydratedzro2nanostructuredsystem
AT mirzayevmatlabn electricenergystorageeffectinhydratedzro2nanostructuredsystem
AT nabiyevasifa electricenergystorageeffectinhydratedzro2nanostructuredsystem
AT popovevgenip electricenergystorageeffectinhydratedzro2nanostructuredsystem
AT stanculescuanca electricenergystorageeffectinhydratedzro2nanostructuredsystem
AT konstantinovatatyanae electricenergystorageeffectinhydratedzro2nanostructuredsystem
AT aleksiayenakyuliav electricenergystorageeffectinhydratedzro2nanostructuredsystem