Cargando…
Electric Energy Storage Effect in Hydrated ZrO(2)-Nanostructured System
The dimensional effect of electric charge storage with a density of up to 270 μF/g by the hydrated ZrO(2)-nanoparticles system was determined. It was found that the place of localization of different charge carriers is the generalized heterophase boundary-nanoparticles surface. The supposed mechanis...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182434/ https://www.ncbi.nlm.nih.gov/pubmed/35683639 http://dx.doi.org/10.3390/nano12111783 |
_version_ | 1784724034768863232 |
---|---|
author | Doroshkevich, Alexander S. Lyubchyk, Andriy I. Oksengendler, Boris L. Zelenyak, Tatyana Yu. Appazov, Nurbol O. Kirillov, Andriy K. Vasilenko, Tatyana A. Tatarinova, Alisa A. Gorban, Oksana O. Bodnarchuk, Viktor I. Nikiforova, Nadejda N. Balasoiu, Maria Mardare, Diana M. Mita, Carmen Luca, Dorin Mirzayev, Matlab N. Nabiyev, Asif A. Popov, Evgeni P. Stanculescu, Anca Konstantinova, Tatyana E. Aleksiayenak, Yulia V. |
author_facet | Doroshkevich, Alexander S. Lyubchyk, Andriy I. Oksengendler, Boris L. Zelenyak, Tatyana Yu. Appazov, Nurbol O. Kirillov, Andriy K. Vasilenko, Tatyana A. Tatarinova, Alisa A. Gorban, Oksana O. Bodnarchuk, Viktor I. Nikiforova, Nadejda N. Balasoiu, Maria Mardare, Diana M. Mita, Carmen Luca, Dorin Mirzayev, Matlab N. Nabiyev, Asif A. Popov, Evgeni P. Stanculescu, Anca Konstantinova, Tatyana E. Aleksiayenak, Yulia V. |
author_sort | Doroshkevich, Alexander S. |
collection | PubMed |
description | The dimensional effect of electric charge storage with a density of up to 270 μF/g by the hydrated ZrO(2)-nanoparticles system was determined. It was found that the place of localization of different charge carriers is the generalized heterophase boundary-nanoparticles surface. The supposed mechanism of the effect was investigated using the theory of dispersed systems, the band theory, and the theory of contact phenomena in semiconductors, which consists of the formation of localized electronic states in the nanoparticle material due to donor–acceptor interaction with the adsorption ionic atmosphere. The effect is relevant for modern nanoelectronics, microsystem technology, and printed electronics because it allows overcoming the basic physical restrictions on the size, temperature, and operation frequency of the device, caused by leakage currents. |
format | Online Article Text |
id | pubmed-9182434 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91824342022-06-10 Electric Energy Storage Effect in Hydrated ZrO(2)-Nanostructured System Doroshkevich, Alexander S. Lyubchyk, Andriy I. Oksengendler, Boris L. Zelenyak, Tatyana Yu. Appazov, Nurbol O. Kirillov, Andriy K. Vasilenko, Tatyana A. Tatarinova, Alisa A. Gorban, Oksana O. Bodnarchuk, Viktor I. Nikiforova, Nadejda N. Balasoiu, Maria Mardare, Diana M. Mita, Carmen Luca, Dorin Mirzayev, Matlab N. Nabiyev, Asif A. Popov, Evgeni P. Stanculescu, Anca Konstantinova, Tatyana E. Aleksiayenak, Yulia V. Nanomaterials (Basel) Article The dimensional effect of electric charge storage with a density of up to 270 μF/g by the hydrated ZrO(2)-nanoparticles system was determined. It was found that the place of localization of different charge carriers is the generalized heterophase boundary-nanoparticles surface. The supposed mechanism of the effect was investigated using the theory of dispersed systems, the band theory, and the theory of contact phenomena in semiconductors, which consists of the formation of localized electronic states in the nanoparticle material due to donor–acceptor interaction with the adsorption ionic atmosphere. The effect is relevant for modern nanoelectronics, microsystem technology, and printed electronics because it allows overcoming the basic physical restrictions on the size, temperature, and operation frequency of the device, caused by leakage currents. MDPI 2022-05-24 /pmc/articles/PMC9182434/ /pubmed/35683639 http://dx.doi.org/10.3390/nano12111783 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Doroshkevich, Alexander S. Lyubchyk, Andriy I. Oksengendler, Boris L. Zelenyak, Tatyana Yu. Appazov, Nurbol O. Kirillov, Andriy K. Vasilenko, Tatyana A. Tatarinova, Alisa A. Gorban, Oksana O. Bodnarchuk, Viktor I. Nikiforova, Nadejda N. Balasoiu, Maria Mardare, Diana M. Mita, Carmen Luca, Dorin Mirzayev, Matlab N. Nabiyev, Asif A. Popov, Evgeni P. Stanculescu, Anca Konstantinova, Tatyana E. Aleksiayenak, Yulia V. Electric Energy Storage Effect in Hydrated ZrO(2)-Nanostructured System |
title | Electric Energy Storage Effect in Hydrated ZrO(2)-Nanostructured System |
title_full | Electric Energy Storage Effect in Hydrated ZrO(2)-Nanostructured System |
title_fullStr | Electric Energy Storage Effect in Hydrated ZrO(2)-Nanostructured System |
title_full_unstemmed | Electric Energy Storage Effect in Hydrated ZrO(2)-Nanostructured System |
title_short | Electric Energy Storage Effect in Hydrated ZrO(2)-Nanostructured System |
title_sort | electric energy storage effect in hydrated zro(2)-nanostructured system |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182434/ https://www.ncbi.nlm.nih.gov/pubmed/35683639 http://dx.doi.org/10.3390/nano12111783 |
work_keys_str_mv | AT doroshkevichalexanders electricenergystorageeffectinhydratedzro2nanostructuredsystem AT lyubchykandriyi electricenergystorageeffectinhydratedzro2nanostructuredsystem AT oksengendlerborisl electricenergystorageeffectinhydratedzro2nanostructuredsystem AT zelenyaktatyanayu electricenergystorageeffectinhydratedzro2nanostructuredsystem AT appazovnurbolo electricenergystorageeffectinhydratedzro2nanostructuredsystem AT kirillovandriyk electricenergystorageeffectinhydratedzro2nanostructuredsystem AT vasilenkotatyanaa electricenergystorageeffectinhydratedzro2nanostructuredsystem AT tatarinovaalisaa electricenergystorageeffectinhydratedzro2nanostructuredsystem AT gorbanoksanao electricenergystorageeffectinhydratedzro2nanostructuredsystem AT bodnarchukviktori electricenergystorageeffectinhydratedzro2nanostructuredsystem AT nikiforovanadejdan electricenergystorageeffectinhydratedzro2nanostructuredsystem AT balasoiumaria electricenergystorageeffectinhydratedzro2nanostructuredsystem AT mardaredianam electricenergystorageeffectinhydratedzro2nanostructuredsystem AT mitacarmen electricenergystorageeffectinhydratedzro2nanostructuredsystem AT lucadorin electricenergystorageeffectinhydratedzro2nanostructuredsystem AT mirzayevmatlabn electricenergystorageeffectinhydratedzro2nanostructuredsystem AT nabiyevasifa electricenergystorageeffectinhydratedzro2nanostructuredsystem AT popovevgenip electricenergystorageeffectinhydratedzro2nanostructuredsystem AT stanculescuanca electricenergystorageeffectinhydratedzro2nanostructuredsystem AT konstantinovatatyanae electricenergystorageeffectinhydratedzro2nanostructuredsystem AT aleksiayenakyuliav electricenergystorageeffectinhydratedzro2nanostructuredsystem |