Cargando…

Thermodynamic Formation Properties of Point Defects in Germanium Crystal

Point defects are crucial in determining the quality of germanium crystals. A quantitative understanding of the thermodynamic formation properties of the point defects is necessary for the subsequent control of the defect formation during crystal growth. Here, molecular dynamics simulations were emp...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Jinping, Zhou, Chenyang, Li, Qihang, Liu, Lijun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182451/
https://www.ncbi.nlm.nih.gov/pubmed/35683322
http://dx.doi.org/10.3390/ma15114026
Descripción
Sumario:Point defects are crucial in determining the quality of germanium crystals. A quantitative understanding of the thermodynamic formation properties of the point defects is necessary for the subsequent control of the defect formation during crystal growth. Here, molecular dynamics simulations were employed to investigate the formation energies, total formation free energies and formation entropies of the point defects in a germanium crystal. As far as we know, this is the first time that the total formation free energies of point defects in a germanium crystal have been reported in the literature. We found that the formation energies increased slightly with temperature. The formation free energies decreased significantly with an increase in temperature due to the increase in entropy. The estimated total formation free energies at the melting temperature are ~1.3 eV for self-interstitial and ~0.75 eV for vacancy, corresponding to a formation entropy of ~15 k(B) for both types of point defects.