Cargando…

Experimental Study on the Mix Ratio of Restored Heritage Building Adobe

The reciprocating action of the external environment gradually reduces the mechanical properties and water stability of original heritage buildings, resulting in the gradual loss of their cultural value. In this paper, the adobe for the construction of raw soil and cultural relics in western Henan i...

Descripción completa

Detalles Bibliográficos
Autores principales: Yue, Jianwei, Zhang, Yiang, Li, Peng, Zhang, Jing, Huang, Xuanjia, Yue, Yang, Han, Zhiguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182486/
https://www.ncbi.nlm.nih.gov/pubmed/35683334
http://dx.doi.org/10.3390/ma15114034
Descripción
Sumario:The reciprocating action of the external environment gradually reduces the mechanical properties and water stability of original heritage buildings, resulting in the gradual loss of their cultural value. In this paper, the adobe for the construction of raw soil and cultural relics in western Henan is taken as the research object. The local plain soil is used as the raw material, and the adobe samples are prepared with modified materials such as quicklime and sodium methyl silicate, in order to improve its mechanical properties and water stability. The degree of correlation between the compressive strength, capillary water absorption, pH value, particle size distribution, and the electrical conductivity of modified raw adobe, as well as the modification mechanism of the microstructure, was studied. The results show that the addition of quicklime and sodium methyl silicate can enhance the compressive strength and water resistance of the modified raw adobe, and the optimum dosage is 1.5% sodium methyl silicate; with the increase of the curing age, the compressive strength of the single-mixed quicklime sample, the single mixed sodium methyl silicate samples, and the composite sample were increased by 1.94 times, 12.6 times and 2.61 times, respectively, compared with the plain soil samples, and with the increase of compressive strength, the pH, conductivity and capillary water absorption of the samples decreased continuously. It is evident from the particle gradation test and SEM images that the internal pores of the samples in the modified group become smaller, and the particle structure of the sample doped with sodium methyl silicate is the densest. The results of the study provide support for the restoration of the soil and cultural-relic buildings.