Cargando…

Simulations of Fractures of Heterogeneous Orthotropic Fiber-Reinforced Concrete with Pre-Existing Flaws Using an Improved Peridynamic Model

The propagation and coalescence of cracks in fiber-reinforced concretes (FRCs) is the direct cause of instability in many engineering structures. To predict the crack propagation path and failure mode of FRCs, an orthotropic-bond-based peridynamic (PD) model was established in this study. A kernel f...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Luming, Zhu, Shu, Zhu, Zhende, Xie, Xinghua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182559/
https://www.ncbi.nlm.nih.gov/pubmed/35683272
http://dx.doi.org/10.3390/ma15113977
Descripción
Sumario:The propagation and coalescence of cracks in fiber-reinforced concretes (FRCs) is the direct cause of instability in many engineering structures. To predict the crack propagation path and failure mode of FRCs, an orthotropic-bond-based peridynamic (PD) model was established in this study. A kernel function reflecting long-range force was introduced, and the fiber bond was used to describe the macroanisotropy of the FRC. The crack propagation process of the FRC plate with flaws was simulated under uniaxial tensile loading. The results showed that under homogeneous conditions, the cracks formed along the centerline of the isotropic concrete propagate in a direction perpendicular to the load. Under anisotropic conditions, the cracks propagate strictly in the direction of the fiber bond. The failure degree of the FRC increases with the increase in heterogeneity. When the shape parameter is 10 and the fiber bond is 0°, the failure mode changes from tensile to shear failure. When the fiber bond is 45°, the FRC changes from a state where outer cracks penetrate the entire specimen to a state where cracks coalesce at the middle. It was found that the improved model can effectively simulate the crack propagation processes of orthotropic FRC materials.