Cargando…

A Novel High-Affinity Potassium Transporter IbHKT-like Gene Enhances Low–Potassium Tolerance in Transgenic Roots of Sweet Potato (Ipomoea batatas (L.) Lam.)

The high-affinity potassium transporters (HKT) mediate K(+)-Na(+) homeostasis in plants. However, the function of enhancing low-potassium tolerance in sweet potato [Ipomoea batatas (L.) Lam.] remains unrevealed. In this study, a novel HKT transporter homolog IbHKT-like gene was cloned from sweet pot...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Wei, Jin, Rong, Wang, Danfeng, Yang, Yufeng, Zhao, Peng, Liu, Ming, Zhang, Aijun, Tang, Zhonghou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182616/
https://www.ncbi.nlm.nih.gov/pubmed/35684162
http://dx.doi.org/10.3390/plants11111389
Descripción
Sumario:The high-affinity potassium transporters (HKT) mediate K(+)-Na(+) homeostasis in plants. However, the function of enhancing low-potassium tolerance in sweet potato [Ipomoea batatas (L.) Lam.] remains unrevealed. In this study, a novel HKT transporter homolog IbHKT-like gene was cloned from sweet potato, which was significantly induced by potassium deficiency stress. IbHKT-like overexpressing transgenic roots were obtained from a sweet potato cultivar Xuzishu8 using an Agrobacterium rhizogenes-mediated root transgenic system in vivo. Compared with the CK, whose root cells did not overexpress the IbHKT-like gene, overexpression of the IbHKT-like gene protected cell ultrastructure from damage, and transgenic root meristem cells had intact mitochondria, endoplasmic reticulum, and Golgi dictyosomes. The steady-state K(+) influx increased by 2.2 times in transgenic root meristem cells. Overexpression of the IbHKT-like gene also improved potassium content in the whole plant, which increased by 63.8% compared with the CK plants. These results could imply that the IbHKT-like gene, as a high-affinity potassium transporter gene, may play an important role in potassium deficiency stress responses.