Cargando…

Oleuropein Counteracts Both the Proliferation and Migration of Intra- and Extragonadal Seminoma Cells

Recent and growing literature has reported that oleuropein (OLE), the main polyphenol in olive leaf extract, inhibits tumor cell proliferation and reduces the invasiveness properties of cancer cells; therefore, OLE may play a significant role in the development of new drugs for cancer treatment. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Bossio, Sabrina, Perri, Anna, Malivindi, Rocco, Giordano, Francesca, Rago, Vittoria, Mirabelli, Maria, Salatino, Alessandro, Brunetti, Antonio, Greco, Emanuela Alessandra, Aversa, Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182631/
https://www.ncbi.nlm.nih.gov/pubmed/35684123
http://dx.doi.org/10.3390/nu14112323
Descripción
Sumario:Recent and growing literature has reported that oleuropein (OLE), the main polyphenol in olive leaf extract, inhibits tumor cell proliferation and reduces the invasiveness properties of cancer cells; therefore, OLE may play a significant role in the development of new drugs for cancer treatment. These antineoplastic properties have been reported in many experimental cancer models, but the effect of OLE on seminoma cells is yet to be evaluated. In the present study, we demonstrate, for the first time, that OLE reduces cell viability in both intra- and extragonadal TCAM-2 and SEM-1 seminoma cells, respectively, in a dose-dependent manner. As shown by Western-blot analysis, OLE exposure reduced cyclin-D1 expression and upregulated p21(Cip/WAF1), concomitantly affecting the upstream pathway of NF-κB, leading to the reduction of its nuclear content, thereby suggesting that OLE could modulate cell-cycle regulators by inhibiting NF-κB. Moreover, Annexin V staining revealed that OLE induced apoptosis in cancer cells and upregulated the pro-apoptotic factor BAX. Through wound-healing scratch and transmigration assays, we also demonstrated that OLE significantly reduced the migration and motility of TCAM-2 and SEM-1 cells, and downregulated the expression of TGFβ-1, which is known to be the main pro-fibrotic factor involved in the acquisition of the migratory and invasive properties of cancer cells. Collectively, our results indicate that OLE reduces seminoma cell proliferation, promotes apoptosis, and counteracts cell migration and motility. Further studies are needed to explore the molecular mechanisms underlying these observed effects.