Cargando…

An information theory-based approach to characterize drivers of upstream salmon migration

The migration timing of Pacific salmon in the Columbia River basin is subject to multiple influences related to climate, human water resource management, and lagged effects such as oceanic conditions. We apply an information theory-based approach to analyze drivers of adult Chinook salmon migration...

Descripción completa

Detalles Bibliográficos
Autores principales: Goodwell, Allison, Campbell, Nicholas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182715/
https://www.ncbi.nlm.nih.gov/pubmed/35679222
http://dx.doi.org/10.1371/journal.pone.0269193
_version_ 1784724104103854080
author Goodwell, Allison
Campbell, Nicholas
author_facet Goodwell, Allison
Campbell, Nicholas
author_sort Goodwell, Allison
collection PubMed
description The migration timing of Pacific salmon in the Columbia River basin is subject to multiple influences related to climate, human water resource management, and lagged effects such as oceanic conditions. We apply an information theory-based approach to analyze drivers of adult Chinook salmon migration within the spring and fall spawning seasons and between years based on salmon counts at dams along the Columbia and Snake Rivers. Time-lagged mutual information and information decomposition measures, which characterize lagged and nonlinear dependencies as reductions in uncertainty, are used to detect interactions between salmon counts and lagged streamflows, air and water temperatures, precipitation, snowpack, climate indices and downstream salmon counts. At a daily timescale, these interdependencies reflect migration timing and show differences between fall and spring run salmon, while dependencies based on variables at an annual resolution reflect long-term predictability. We also highlight several types of joint dependencies where predictability of salmon counts depends on the knowledge of multiple lagged sources. This study illustrates how co-varying human and natural drivers could propagate to influence salmon migration timing or overall returns, and how nonlinear types of dependencies between variables enhance predictability of a target. This information-based framework is broadly applicable to assess driving factors in other types of complex water resources systems or species life cycles.
format Online
Article
Text
id pubmed-9182715
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-91827152022-06-10 An information theory-based approach to characterize drivers of upstream salmon migration Goodwell, Allison Campbell, Nicholas PLoS One Research Article The migration timing of Pacific salmon in the Columbia River basin is subject to multiple influences related to climate, human water resource management, and lagged effects such as oceanic conditions. We apply an information theory-based approach to analyze drivers of adult Chinook salmon migration within the spring and fall spawning seasons and between years based on salmon counts at dams along the Columbia and Snake Rivers. Time-lagged mutual information and information decomposition measures, which characterize lagged and nonlinear dependencies as reductions in uncertainty, are used to detect interactions between salmon counts and lagged streamflows, air and water temperatures, precipitation, snowpack, climate indices and downstream salmon counts. At a daily timescale, these interdependencies reflect migration timing and show differences between fall and spring run salmon, while dependencies based on variables at an annual resolution reflect long-term predictability. We also highlight several types of joint dependencies where predictability of salmon counts depends on the knowledge of multiple lagged sources. This study illustrates how co-varying human and natural drivers could propagate to influence salmon migration timing or overall returns, and how nonlinear types of dependencies between variables enhance predictability of a target. This information-based framework is broadly applicable to assess driving factors in other types of complex water resources systems or species life cycles. Public Library of Science 2022-06-09 /pmc/articles/PMC9182715/ /pubmed/35679222 http://dx.doi.org/10.1371/journal.pone.0269193 Text en © 2022 Goodwell, Campbell https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Goodwell, Allison
Campbell, Nicholas
An information theory-based approach to characterize drivers of upstream salmon migration
title An information theory-based approach to characterize drivers of upstream salmon migration
title_full An information theory-based approach to characterize drivers of upstream salmon migration
title_fullStr An information theory-based approach to characterize drivers of upstream salmon migration
title_full_unstemmed An information theory-based approach to characterize drivers of upstream salmon migration
title_short An information theory-based approach to characterize drivers of upstream salmon migration
title_sort information theory-based approach to characterize drivers of upstream salmon migration
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182715/
https://www.ncbi.nlm.nih.gov/pubmed/35679222
http://dx.doi.org/10.1371/journal.pone.0269193
work_keys_str_mv AT goodwellallison aninformationtheorybasedapproachtocharacterizedriversofupstreamsalmonmigration
AT campbellnicholas aninformationtheorybasedapproachtocharacterizedriversofupstreamsalmonmigration
AT goodwellallison informationtheorybasedapproachtocharacterizedriversofupstreamsalmonmigration
AT campbellnicholas informationtheorybasedapproachtocharacterizedriversofupstreamsalmonmigration