Cargando…
A Chip Antenna for Bluetooth Earphones with Cross-Head Interference Tested from Received-Signal Sensing
In this paper, a novel chip antenna and its function in wireless connectivity are presented for Bluetooth (BLT) earphones. The chip antenna is a metamaterial so compact (<λ/8), as the size of 4.9 × 13.0 × 2.0 mm(3), that when it is mounted on the realistic PCB, it can be held in the enclosure of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182745/ https://www.ncbi.nlm.nih.gov/pubmed/35684593 http://dx.doi.org/10.3390/s22113969 |
_version_ | 1784724111069544448 |
---|---|
author | Seo, Yejune Cho, Junghyun Lee, Yejin Jang, Jiyeon Kwon, Hyung-Wook Kahng, Sungtek |
author_facet | Seo, Yejune Cho, Junghyun Lee, Yejin Jang, Jiyeon Kwon, Hyung-Wook Kahng, Sungtek |
author_sort | Seo, Yejune |
collection | PubMed |
description | In this paper, a novel chip antenna and its function in wireless connectivity are presented for Bluetooth (BLT) earphones. The chip antenna is a metamaterial so compact (<λ/8), as the size of 4.9 × 13.0 × 2.0 mm(3), that when it is mounted on the realistic PCB, it can be held in the enclosure of the BLT earphone. This setting does not degrade the resonance (S(11) < −10 dB) of the proposed antenna. As two earphones in a pair are demanded to communicate with each other, one shares an RF signal with the other and they take turns as the master and slave. The received signal sensing is conducted with the latest model of human head-ear-phantom located between the earphones to mimic the real use-case and cross-head interference. Electromagnetic simulation of the antenna is done and verified by fabrication and measurement. Particularly, received-signal strength indications between the proposed antennas in the earphones are experimentally obtained as −67.5 dBm and −70 dBm without and with the head-ear-phantom, respectively, much greater than −120 dBm, the limit of detection, and implying acceptable connectivity and invulnerability over cross-head-interference problems. |
format | Online Article Text |
id | pubmed-9182745 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91827452022-06-10 A Chip Antenna for Bluetooth Earphones with Cross-Head Interference Tested from Received-Signal Sensing Seo, Yejune Cho, Junghyun Lee, Yejin Jang, Jiyeon Kwon, Hyung-Wook Kahng, Sungtek Sensors (Basel) Article In this paper, a novel chip antenna and its function in wireless connectivity are presented for Bluetooth (BLT) earphones. The chip antenna is a metamaterial so compact (<λ/8), as the size of 4.9 × 13.0 × 2.0 mm(3), that when it is mounted on the realistic PCB, it can be held in the enclosure of the BLT earphone. This setting does not degrade the resonance (S(11) < −10 dB) of the proposed antenna. As two earphones in a pair are demanded to communicate with each other, one shares an RF signal with the other and they take turns as the master and slave. The received signal sensing is conducted with the latest model of human head-ear-phantom located between the earphones to mimic the real use-case and cross-head interference. Electromagnetic simulation of the antenna is done and verified by fabrication and measurement. Particularly, received-signal strength indications between the proposed antennas in the earphones are experimentally obtained as −67.5 dBm and −70 dBm without and with the head-ear-phantom, respectively, much greater than −120 dBm, the limit of detection, and implying acceptable connectivity and invulnerability over cross-head-interference problems. MDPI 2022-05-24 /pmc/articles/PMC9182745/ /pubmed/35684593 http://dx.doi.org/10.3390/s22113969 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Seo, Yejune Cho, Junghyun Lee, Yejin Jang, Jiyeon Kwon, Hyung-Wook Kahng, Sungtek A Chip Antenna for Bluetooth Earphones with Cross-Head Interference Tested from Received-Signal Sensing |
title | A Chip Antenna for Bluetooth Earphones with Cross-Head Interference Tested from Received-Signal Sensing |
title_full | A Chip Antenna for Bluetooth Earphones with Cross-Head Interference Tested from Received-Signal Sensing |
title_fullStr | A Chip Antenna for Bluetooth Earphones with Cross-Head Interference Tested from Received-Signal Sensing |
title_full_unstemmed | A Chip Antenna for Bluetooth Earphones with Cross-Head Interference Tested from Received-Signal Sensing |
title_short | A Chip Antenna for Bluetooth Earphones with Cross-Head Interference Tested from Received-Signal Sensing |
title_sort | chip antenna for bluetooth earphones with cross-head interference tested from received-signal sensing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9182745/ https://www.ncbi.nlm.nih.gov/pubmed/35684593 http://dx.doi.org/10.3390/s22113969 |
work_keys_str_mv | AT seoyejune achipantennaforbluetoothearphoneswithcrossheadinterferencetestedfromreceivedsignalsensing AT chojunghyun achipantennaforbluetoothearphoneswithcrossheadinterferencetestedfromreceivedsignalsensing AT leeyejin achipantennaforbluetoothearphoneswithcrossheadinterferencetestedfromreceivedsignalsensing AT jangjiyeon achipantennaforbluetoothearphoneswithcrossheadinterferencetestedfromreceivedsignalsensing AT kwonhyungwook achipantennaforbluetoothearphoneswithcrossheadinterferencetestedfromreceivedsignalsensing AT kahngsungtek achipantennaforbluetoothearphoneswithcrossheadinterferencetestedfromreceivedsignalsensing AT seoyejune chipantennaforbluetoothearphoneswithcrossheadinterferencetestedfromreceivedsignalsensing AT chojunghyun chipantennaforbluetoothearphoneswithcrossheadinterferencetestedfromreceivedsignalsensing AT leeyejin chipantennaforbluetoothearphoneswithcrossheadinterferencetestedfromreceivedsignalsensing AT jangjiyeon chipantennaforbluetoothearphoneswithcrossheadinterferencetestedfromreceivedsignalsensing AT kwonhyungwook chipantennaforbluetoothearphoneswithcrossheadinterferencetestedfromreceivedsignalsensing AT kahngsungtek chipantennaforbluetoothearphoneswithcrossheadinterferencetestedfromreceivedsignalsensing |